adaptation method
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 130)

H-INDEX

19
(FIVE YEARS 4)

Author(s):  
Qianlong Dang ◽  
Weifeng Gao ◽  
Maoguo Gong

AbstractMultiobjective multitasking optimization (MTO) is an emerging research topic in the field of evolutionary computation, which has attracted extensive attention, and many evolutionary multitasking (EMT) algorithms have been proposed. One of the core issues, designing an efficient transfer strategy, has been scarcely explored. Keeping this in mind, this paper is the first attempt to design an efficient transfer strategy based on multidirectional prediction method. Specifically, the population is divided into multiple classes by the binary clustering method, and the representative point of each class is calculated. Then, an effective prediction direction method is developed to generate multiple prediction directions by representative points. Afterward, a mutation strength adaptation method is proposed according to the improvement degree of each class. Finally, the predictive transferred solutions are generated as transfer knowledge by the prediction directions and mutation strengths. By the above process, a multiobjective EMT algorithm based on multidirectional prediction method is presented. Experiments on two MTO test suits indicate that the proposed algorithm is effective and competitive to other state-of-the-art EMT algorithms.


Author(s):  
Rui Wang ◽  
Weiguo Huang ◽  
Juanjuan Shi ◽  
Jun Wang ◽  
Changqing Shen ◽  
...  

Abstract Due to the data distribution discrepancy caused by the time-varying working conditions, the intelligent diagnosis methods fail to achieve accurate fault classification in engineering scenarios. To this end, this paper presents a novel higher-order moment matching-based adversarial domain adaptation method (HMMADA) for intelligent bearing fault diagnosis. First, the deep one-dimensional convolution neural network is constructed as the feature extractor to learn the discriminative features of each category through different domains. Then, the distribution discrepancy across domains is significantly reduced by using the joint higher-order moment statistics (HMS) and adversarial learning. In particular, the HMS integrates the first-order and second-order statistics into a unified framework and achieves a fine-grained distribution adaptation between different domains. Finally, the feasibility and effectiveness of the HMMADA are validated by several transfer experiments constructed on two different bearing datasets. The results demonstrate that the HMS is more effective compared with the lower-order statistics.


2021 ◽  
pp. 110883
Author(s):  
Wojciech Laskowski ◽  
Gonzalo Rubio ◽  
Eusebio Valero ◽  
Esteban Ferrer

Author(s):  
Ali Ozdagli ◽  
Xenofon Koutsoukos

In the last decade, the interest in machine learning (ML) has grown significantly within the structural health monitoring (SHM) community. Traditional supervised ML approaches for detecting faults assume that the training and test data come from similar distributions. However, real-world applications, where an ML model is trained, for example, on numerical simulation data and tested on experimental data, are deemed to fail in detecting the damage. The deterioration in the prediction performance is mainly related to the fact that the numerical and experimental data are collected under different conditions and they do not share the same underlying features. This paper proposes a domain adaptation approach for ML-based damage detection and localization problems where the classifier has access to the labeled training (source) and unlabeled test (target) data, but the source and target domains are statistically different. The proposed domain adaptation method seeks to form a feature space that is capable of representing both source and target domains by implementing a domain-adversarial neural network. This neural network uses H-divergence criteria to minimize the discrepancy between the source and target domain in a latent feature space. To evaluate the performance, we present two case studies where we design a neural network model for classifying the health condition of a variety of systems. The effectiveness of the domain adaptation is shown by computing the classification accuracy of the unlabeled target data with and without domain adaptation. Furthermore, the performance gain of the domain adaptation over a well-known transfer knowledge approach called Transfer Component Analysis is also demonstrated. Overall, the results demonstrate that the domain adaption is a valid approach for damage detection applications where access to labeled experimental data is limited.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7785
Author(s):  
Jun Mao ◽  
Change Zheng ◽  
Jiyan Yin ◽  
Ye Tian ◽  
Wenbin Cui

Training a deep learning-based classification model for early wildfire smoke images requires a large amount of rich data. However, due to the episodic nature of fire events, it is difficult to obtain wildfire smoke image data, and most of the samples in public datasets suffer from a lack of diversity. To address these issues, a method using synthetic images to train a deep learning classification model for real wildfire smoke was proposed in this paper. Firstly, we constructed a synthetic dataset by simulating a large amount of morphologically rich smoke in 3D modeling software and rendering the virtual smoke against many virtual wildland background images with rich environmental diversity. Secondly, to better use the synthetic data to train a wildfire smoke image classifier, we applied both pixel-level domain adaptation and feature-level domain adaptation. The CycleGAN-based pixel-level domain adaptation method for image translation was employed. On top of this, the feature-level domain adaptation method incorporated ADDA with DeepCORAL was adopted to further reduce the domain shift between the synthetic and real data. The proposed method was evaluated and compared on a test set of real wildfire smoke and achieved an accuracy of 97.39%. The method is applicable to wildfire smoke classification tasks based on RGB single-frame images and would also contribute to training image classification models without sufficient data.


2021 ◽  
Vol 2022 (1) ◽  
pp. 629-648
Author(s):  
Moses Namara ◽  
Henry Sloan ◽  
Bart P. Knijnenburg

Abstract Research finds that the users of Social Networking Sites (SNSs) often fail to comprehensively engage with the plethora of available privacy features— arguably due to their sheer number and the fact that they are often hidden from sight. As different users are likely interested in engaging with different subsets of privacy features, an SNS could improve privacy management practices by adapting its interface in a way that proactively assists, guides, or prompts users to engage with the subset of privacy features they are most likely to benefit from. Whereas recent work presents algorithmic implementations of such privacy adaptation methods, this study investigates the optimal user interface mechanism to present such adaptations. In particular, we tested three proposed “adaptation methods” (automation, suggestions, highlights) in an online between-subjects user experiment in which 406 participants used a carefully controlled SNS prototype. We systematically evaluate the effect of these adaptation methods on participants’ engagement with the privacy features, their tendency to set stricter settings (protection), and their subjective evaluation of the assigned adaptation method. We find that the automation of privacy features afforded users the most privacy protection, while giving privacy suggestions caused the highest level of engagement with the features and the highest subjective ratings (as long as awkward suggestions are avoided). We discuss the practical implications of these findings in the effectiveness of adaptations improving user awareness of, and engagement with, privacy features on social media.


Sign in / Sign up

Export Citation Format

Share Document