Modeling of the process of heat and mass transfer of transpiration-cooling systems in the presence of periodic perturbations

2011 ◽  
Vol 84 (4) ◽  
pp. 709-716
Author(s):  
A. N. Golovanov ◽  
A. S. Yakimov
2010 ◽  
Vol 31 (1) ◽  
pp. 33-43
Author(s):  
Piotr Duda ◽  
Grzegorz Mazurkiewicz

Numerical modeling of heat and mass transfer in cylindrical ductsIn this work, numerical modeling of steady state heat and mass transfer is presented. Both laminar and hydrodynamically fully developed turbulent flow in a pipe are shown. Numerical results are compared with values obtained from analytical solution of such problems. The problems under consideration are often denoted as extended Graetz problems. They occur in heat exchangers using liquid metals as working fluid, in cooling systems for electric components or in chemical process lines. Calculations were carried out gradually decreasing the mesh size in order to examine the convergence of numerical method to analytical solution.


Author(s):  
Qun Chen ◽  
Moran Wang ◽  
Ning Pan ◽  
Zeng-Yuan Guo

Using the analogy between heat and mass transfer processes, the recently developed entransy theory is extended in this paper to tackle the coupled heat and mass transfer processes so as to analyze and optimize the performance of evaporative cooling systems. We first introduce a few new concepts including the moisture entransy, moisture entransy dissipation, and the thermal resistance in terms of the moisture entransy dissipation. Thereinafter, the moisture entransy is employed to describe the endothermic ability of a moist air. The moisture entransy dissipation on the other hand is used to measure the loss of the endothermic ability, i.e. the irreversibility, in the coupled heat and mass transfer processes, which consists of three parts: (1) the sensible heat entransy dissipation, (2) the latent heat entransy dissipation, and (3) the entransy dissipation induced by a temperature potential. And then the new thermal resistance, defined as the moisture entransy dissipation rate divided by the squared refrigerating effect output rate, is recommended as an index to effectively reflect the performance of the evaporative cooling system. Meanwhile, a minimum thermal resistance law for optimizing the evaporative cooling systems is developed. In the end, several direct and indirect evaporative cooling processes are analyzed to illustrate the applications of the proposed concepts.


2010 ◽  
Vol 297-301 ◽  
pp. 802-807
Author(s):  
Nadia Allouache ◽  
Rachid Bennacer ◽  
Salahs Chikh ◽  
A. Al Mers

The present study deals with a solid adsorption refrigerator analysis using activated carbon/methanol pair. It is a contribution to technology development of solar cooling systems. The main objective consists to analyse the heat and mass transfer in an annular porous adsorber that is the most important component of the system. The porous medium is contained in the annular space and the adsorber is heated by solar energy. A general model equation is used for modelling the transient heat and mass transfer. Effects of the key parameters on the adsorbed quantity, the coefficient of performance, and thus on the system performance are analysed and discussed.


Sign in / Sign up

Export Citation Format

Share Document