transpiration cooling
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 83)

H-INDEX

25
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Rupali Sahu ◽  
Albina Tropina ◽  
Daniil Andrienko ◽  
Richard B. Miles

2022 ◽  
Author(s):  
Nicholas W. Rathay ◽  
Gustavo Ledezma ◽  
Thomas Dyson

2022 ◽  
Author(s):  
Junhwi Bak ◽  
Anuj Rekhy ◽  
Christopher Limbach ◽  
Richard B. Miles ◽  
James Creel

2021 ◽  
pp. 1-23
Author(s):  
Zheng Min ◽  
Sarwesh Narayan Parbat ◽  
Qing-Ming Wang ◽  
Minking K. Chyu

Abstract Transpiration cooling is able to provide more uniform coolant coverage than film cooling to effectively protect the component surface from contacting the hot gas. Due to numerous coolant ejection outlets within a small area at the target surface, the experimental thermo-fluid investigation on transpiration cooing becomes a significant challenge. Two classic methods to investigate film cooling, the steady-state foil heater method and the transient thermography technique, both fail for transpiration cooling because the foil heater would block numerous coolant outlets, and the semi-infinite solid conduction model no longer holds for porous plates. In this study, a micro-lithography method to fabricate a silver coil pattern on top of the additively manufactured polymer porous media as the surface heater was proposed. The circuit was deliberately designed to cover the solid surface in a combination of series connection and parallel connection to ensure the power in each unit cell area at the target surface was identical. With uniform heat flux generation, the steady-state tests were conducted to obtain distributions of a pair of parameters, adiabatic cooling effectiveness, and heat transfer coefficient (HTC). The results showed that the adiabatic cooling effectiveness could reach 0.65 with a blowing ratio lower than 0.5. Meanwhile, the heat transfer coefficient ratio (hf/h0) of transpiration cooling was close to 1 with a small blowing ratio at 0.125. A higher HTC ratio was observed for smaller pitch-to-diameter cases due to more turbulence intensity generated at the target surface.


2021 ◽  
Author(s):  
Oliver L. Paxton ◽  
Nicholas N. Gibbons ◽  
Hadas Porat ◽  
Ingo Jahn

2021 ◽  
Vol 2097 (1) ◽  
pp. 012011
Author(s):  
Kang Qian ◽  
Taolue Liu ◽  
Fei He ◽  
Meng Wang ◽  
Longsheng Tang ◽  
...  

Abstract This paper proposed a numerical strategy which could achieve the coupled modeling and solving of transpiration cooling with external high-temperature gas flow and especially take the radiation effect into account. Based on the numerical strategy, the heat and mass transfer characteristics of the transpiration cooling in a high-temperature gas channel were studied, and the radiation effect and corresponding influence factors were analyzed. The results indicated that the radiative heat flux takes an important role in the heat transfer between the transpiration cooling and external high-temperature gas flow which may reach 40% under the operating condition considered in this work, and the radiation absorption from the coolant is more obvious near the downstream wall. As the wall emissivity increases, the radiation heat transfer in the downstream area of the porous wall is enhanced significantly and thereby the wall temperature there increases, as the result, the uniformity of the temperature distribution on the whole porous wall is improved to some extent.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012021
Author(s):  
Meng Wang ◽  
Jianhua Wang ◽  
Fei He ◽  
Kang Qian ◽  
Yadong Wu ◽  
...  

Abstract In the severe high-temperature environment caused by aerodynamic heating, the vibrational excitation, dissociation and ionization of gas may successively occur, which are known as real gas effects. Under the real gas effects, the thermodynamic properties of gas vary drastically and significantly influence the performances of the active thermal protection system of hypersonic vehicles, especially in the case with coolant outflow, for example transpiration cooling. This paper numerically investigates the transpiration cooling performance with the consideration of the interaction between coolant outflow and hypersonic flow under the real gas effects. The mathematical models and coupled numerical strategy are firstly validated by experimental data, then the influences of real gas effects on the transpiration cooling of a wedged leading edge (WLE) are studied under a flight Mach number range from 8 to 12 and a flight height of 40 km. The analysis and discussions of the numerical results reveal some important phenomena and demonstrate the need to consider real gas effects.


Sign in / Sign up

Export Citation Format

Share Document