solar cooling system
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8198
Author(s):  
Pablo Casado ◽  
José M. Blanes ◽  
Francisco Javier Aguilar Valero ◽  
Cristian Torres ◽  
Manuel Lucas Miralles ◽  
...  

The photovoltaic evaporative chimney is a novel solar-cooling system that serves a double purpose: it increases the efficiency of the photovoltaic (PV) panels and it cools down a water stream which can be used to dissipate the heat from a refrigeration cycle. One of the major issues arising from the operation of the chimney is the temperature stratification in the panel due to the movement of the air in the chimney. This effect can trigger the activation of the bypass diodes of the module, creating local maximum power points (MPP) that can compromise the grid-tied inverter tracking. To fill this gap, this paper deals with the design and implementation of an I–V curve measurement system to be used in the performance analysis of the system. The I–V curve tracer consists of a capacitive load controlled by a single board computer. The final design includes protections, capacitor charging/discharging power electronics, remote commands inputs, and current, voltage, irradiance, and temperature sensors.The results show that the modules bypass diodes are not activated during the tests, and no local MPPs appear. Moreover, the curves measured show the benefits of the photovoltaic chimney: the cooling effect increases the power generated by the PV panels by around 10%.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6749
Author(s):  
Farkad A. Lattieff ◽  
Mohammed A. Atiya ◽  
Jasim M. Mahdi ◽  
Hasan Sh. Majdi ◽  
Pouyan Talebizadehsardari ◽  
...  

In solar-thermal adsorption/desorption processes, it is not always possible to preserve equal operating times for the adsorption/desorption modes due to the fluctuating supply nature of the source which largely affects the system’s operating conditions. This paper seeks to examine the impact of adopting unequal adsorption/desorption times on the entire cooling performance of solar adsorption systems. A cooling system with silica gel–water as adsorbent-adsorbate pair has been built and tested under the climatic condition of Iraq. A mathematical model has been established to predict the system performance, and the results are successfully validated via the experimental findings. The results show that, the system can be operational at the unequal adsorption/desorption times. The performance of the system with equal time is almost twice that of the unequal one. The roles of adsorption velocity, adsorption capacity, overall heat transfer coefficient, and the performance of the cooling system are also evaluated.


2021 ◽  
Vol 11 (2) ◽  
pp. 511
Author(s):  
Aiman Albatayneh ◽  
Mustafa Jaradat ◽  
Murad Al-Omary ◽  
Maha Zaquot

When they were first conceived, solar cooling systems were designed to be cost-effective and environmentally safe alternatives for the majority of the developing nations that are characterised by their hot climates in contrast with the traditional air conditioning systems powered by electricity that is produced from fossil fuel resources. Nevertheless, developments in photovoltaic (PV) and air-conditioning technologies have impacted on the prospects of solar cooling systems. This study examined two different options: a coupled PV and air conditioner system and a solar cooling system (absorption chillers where thermal energy is provided by solar collectors) for a specific developing country located in the Eastern Mediterranean region whose climate is hot and dry (Jordan). The cooling system comprised a pair of cooled multistage compression, both of which were 700 kW, while the PV system’s size was 2.1 MWp, the utility grid connection was a 0.4 kV 50 Hz net meter (2 m) and it was anticipated that 3300 MWh/year would be generated. The solar cooling system operated at a maximum coefficient of performance (COP) of 0.79 and had an actual recorded COP of 0.32 on the site; when the electricity tariff of $0.1/kWh was considered, the respective levelised cost of energy (LCOE) values were $0.9/kWh and $2.35/kWh respectively. The findings indicate that the initial costs for the solar thermal cooling system and the PV system were approximately $3.150M and $3M, respectively. The current value of future cash payments when discounts of 6% per year were applied to the payments for the combination of PV and air conditioning was about $9,745,000, whereas the solar thermal cooling system will not reach the breakeven point at negative $1,730,000. It is clear the absorption chiller did not display economic feasibility, whereas the value for the coupled PV and air-conditioning systems was under $0.05/kWh. In addition to the extensive maintenance needs, the reduced COP and the practicality and feasibility of the solar thermal cooling systems mean these kinds of technologies are under significant pressure to remain competitive when faced with the development of new air conditioning and PV technologies.


2020 ◽  
pp. 1107-1114
Author(s):  
G. Puglisi ◽  
G. Vox ◽  
C.A. Campiotti ◽  
G. Scarascia Mugnozza ◽  
E. Schettini

Author(s):  
Sara El Hassani ◽  
Hanane Ait Lahoussine ◽  
Hamid Amaoui ◽  
Mohammed Amine Moussaoui ◽  
Ahmed Mezrhab

2020 ◽  
Vol 10 (10) ◽  
pp. 3354 ◽  
Author(s):  
Jan Albers

In this contribution, a model predictive control algorithm is developed, which allows an increase of the solar operating hours of a solar cooling system without a negative impact on the auxiliary electricity demand, e.g., for heat rejection in a dry cooler. An improved method of the characteristic equations for single-effect H 2 O / LiBr absorption chillers is used in combination with a simple dry-cooler model to describe the part load behavior of both components. The aim of the control strategy is to find a cut-in and a cut-off condition for the solar heat operation (SHO) of an absorption chiller cooling assembly (i.e., including all the supply pumps and the dry cooler) under the constraint that the specific electricity demand during SHO is lower than the electricity demand of a reference cooling technology (e.g., a compression chiller cooling assembly). Especially for the cut-in condition, the model predictive control algorithm calculates a minimum driving temperature, which has to be reached by the solar collector and storage in order to cover the cooling load with a low cooling water temperature but restricted auxiliary electricity demand. Measurements at a solar cooling system for an IT center were used for the testing and a first evaluation of the control algorithm.


Sign in / Sign up

Export Citation Format

Share Document