thermal resistance
Recently Published Documents


TOTAL DOCUMENTS

4301
(FIVE YEARS 916)

H-INDEX

74
(FIVE YEARS 10)

2022 ◽  
Vol 934 ◽  
Author(s):  
N.G. Hadjiconstantinou ◽  
M.M. Swisher

The thermal resistance associated with the interface between a solid and a liquid is analysed from an atomistic point of view. Partial evaluation of the associated Green–Kubo integral elucidates the various factors governing heat transport across the interface and leads to a quantitative model for the thermal resistance in terms of atomistic-level system parameters. The model is validated using molecular dynamics simulations.


Author(s):  
Sofia Paixão ◽  
Cláudia Peixoto ◽  
Marta Reinas ◽  
João Carvalho

AbstractThe present document discusses the development of a new trowelable Thermal Protection System (TPS), able of being mixed, applied and cured directly onto the vehicle structure, with the aim to fulfill the requirements of the thermal properties for the re-usable launch vehicle studied in the Retro Propulsion Landing Technology (RETALT) project. During the development of this TPS, several formula optimizations were made to improve or eliminate cracks in the char surface, increase char stiffness, rheological adjustments, and adhesion improvement to different substrates. The most promising material developed is composed by cork and epoxy resin, together with a set of rheological and thermal resistance additives, that makes it possible to be applied with a spatula, while at the same time it is able to withstand the demanding environmental conditions during atmospheric reentry. In terms of thermal properties, the developed material has a higher thermal conductivity than the current P50 TPS commercialized by Amorim Cork Composites (ACC), but it has a better behavior when exposed to flame conditions. It is expected that the absence of cracks improves its structure and resistance to demanding conditions. The development work included a detailed study of the composition and processes required for the development of a TPS material, which were evaluated by several types of flame characterization tests and thermal properties analysis.


Author(s):  
Aryádina Mara Ribeiro ◽  
Aline Dias Paiva ◽  
Alexandra Manoela Oliveira Cruz ◽  
Maria Cristina Dantas Vanetti ◽  
Sukarno Olavo Ferreira ◽  
...  

2022 ◽  
Vol 92 (3) ◽  
pp. 457
Author(s):  
А.Н. Паньчак ◽  
М.З. Шварц

In photovoltaic converters of concentrated sunlight, the thermal flow is directed from the photoactive region (p-n junction) to a heat-spreading basement through the substrate. The heat sink transfers the excess thermal to the environment by convection or cooled by a liquid carrier. Reducing the thickness of the substrate makes it possible to reduce the thermal resistance of the crystal and lower the operating temperature of the photoactive region. However, in this case, the mechanical stresses in it increase. This work discusses the balance between the mechanical strength of the sample and the decrease in its operating temperature.


Author(s):  
P. Dileep ◽  
M.P. Poornima ◽  
Sinto Jacob ◽  
John P. Rappai ◽  
C.D. Midhun Dominic
Keyword(s):  

2022 ◽  
Vol 354 ◽  
pp. 00040
Author(s):  
Marius Darie ◽  
Tiberiu Csaszar ◽  
Adriana Andriș ◽  
Ioana Ciobanu

In paperwork is presented the estimation of the maximum surface temperature of cells exposed to specific tests for the intrinsic safety type of protection. Particularly, it presents the thermal resistance of the short-circuit test-stand results. The first part introduces the aspects regarding the risk of explosion. The risk of explosion occurs due to the presence of technical equipment in areas where flammable substances may occur. The second part itemizes the requirements for the testing of cells. Also, is introduced the stand configuration and performance aspects. The third part of the paper has been dedicated to the presentation and the discussion of the obtained results. The analysis of the test results highlighted the range of thermal resistance. This result could help estimation of the surface temperature of cells based on their capacity and internal resistance. The convection coefficients were determined. The process of deep discharge destroys the inner electrochemical of the cell system. Therefore, it permits energy recovery lower than a fraction of a tenth.


Sign in / Sign up

Export Citation Format

Share Document