Filtration pressure field in an inhomogeneous bed in constant drainage

2012 ◽  
Vol 85 (1) ◽  
pp. 1-18 ◽  
Author(s):  
A. I. Filippov ◽  
O. V. Akhmetova ◽  
I. M. Filippov
2020 ◽  
Vol 93 (6) ◽  
pp. 1353-1362
Author(s):  
A. I. Filippov ◽  
A. A. Koval’skii ◽  
O. V. Akhmetova

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1088-1096
Author(s):  
O. H. Unalmis ◽  
D. S. Dolling

1982 ◽  
Vol 47 (12) ◽  
pp. 3362-3370
Author(s):  
Otakar Söhnel ◽  
Eva Matějčková

Filtration properties of batchwise precipitated suspensions of Zn(OH)2, Mg(OH)2 and Cu(OH)2 and continuously precipitated Al(OH)3 were studied. For batchwise precipitated suspensions was verified the theoretically predicted dependence of specific filtration resistance on initial supersaturation and for the continuously precipitated Al(OH)3 the relation between the specific filtration resistance and the mean residence time of suspension in the reactor. Dependences were also recorded between the bed porosity and concentration of precipitated solutions, specific filtration resistance and used filtration pressure and the effect of aging of the batchwise precipitated suspension of Mg(OH)2on its filtration properties. The used CST method for determination of filtration characteristics of Zn(OH)2 suspension was also studied.


1993 ◽  
Vol 265 (2) ◽  
pp. H543-H552 ◽  
Author(s):  
Y. Yuan ◽  
W. M. Chilian ◽  
H. J. Granger ◽  
D. C. Zawieja

This study reports measurements of albumin permeability in isolated coronary venules. The isolated microvessel technique allows the quantification of transmural exchange of macromolecules under tightly controlled physical and chemical conditions. Transvenular exchange of albumin was studied in isolated coronary venules during alterations in filtration rate caused by changes in intravascular pressure. The apparent permeability coefficient of albumin (Pa) at an intraluminal pressure of 11 cmH2O was 3.92 +/- 0.43 x 10(-6) cm/s. Elevating intraluminal pressure to 16 and 21 cmH2O increased Pa to 5.13 +/- 0.57 x 10(-6) and 6.78 +/- 0.66 x 10(-6) cm/s, respectively. Calculation of the true diffusive permeability coefficient of albumin (Pd) at zero filtration rate was 1.54 x 10(-6) cm/s. The product of hydraulic conductance (Lp) and (1 - sigma), where sigma is the solute reflection coefficient, was 3.25 x 10(-7) cm.s-1 x cmH2O-1. At a net filtration pressure of 4-5 cmH2O, diffusion accounts for > 60% of total albumin transport across the venular wall. Transmural albumin flux is very sensitive to filtration rate, rising 6.7% for each cmH2O elevation of net filtration pressure. At 11 cmH2O net filtration pressure, convection accounts for nearly 70% of net albumin extravasation from the venular lumen. We suggest that the isolated coronary venule is a suitable preparation for the study of solute exchange in the heart.


2021 ◽  
Vol 94 (1) ◽  
pp. 36-44
Author(s):  
A. I. Filippov ◽  
A. A. Koval’skii ◽  
O. V. Akhmetova ◽  
M. R. Gubaidullin

2021 ◽  
Vol 385 ◽  
pp. 1-11
Author(s):  
Rodrigo Xavier de Almeida Leão ◽  
Leandro Silva Amorim ◽  
Marcio Ferreira Martins ◽  
Humberto Belich Junior ◽  
Enrico Sarcinelli ◽  
...  

2021 ◽  
Vol 33 (2) ◽  
pp. 023302
Author(s):  
Wei Liu ◽  
Ning Li ◽  
Chun-sheng Weng ◽  
Xiao-long Huang ◽  
Yang Kang

Sign in / Sign up

Export Citation Format

Share Document