filtration resistance
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 3 (3) ◽  
pp. 3-10
Author(s):  
B. H. Nugmanov

One of the ways to increase well oil production is to reduce the filtration resistance of the bottom-hole zone. Along with well-known stimulation methods, such as modern methods of treating wells bottom-hole zone, side tracking (drilling of lateral horizontal boreholes) is of great interest. The following works have been implemented Kalamkas field: a complex of geological, geophysical and field exploration; correlation schemes to track the lithology of the formation; clarifying structural maps and engineering maps; justifying activities to select one or more wells for horizontal drilling; hydrodynamic calculations and estimating their flow rate.


Author(s):  
Le Kang ◽  
Yuankun Liu ◽  
Liping Wang ◽  
Xiaoping Gao

Abstract The filtration layer in a medical protective mask can effectively prevent aerosol particles that might carry viruses from air. A nanofiber/microfiber composite membrane (NMCM) was successfully fabricated by electrospinning polyvinylidene fluoride (PVDF) nanofibers collected on the electrified and melt-blown polypropylene (PP) nonwovens, aiming to improve the filtration efficiency and reduce the resistance of respiration of mask. A four-factor and three-level orthogonal experiment was designed to study the effect of electrospinning parameters such as spinning solution concentration, voltage, tip-collect distance (TCD), and flow rate of solution on the filtration efficiency, resistance of respiration as well as quality factor of NMC developed to predict the resistance of respiration. Experimental results demonstrated that the filtration efficiency of NMCM≥95% in comparison to that of electrified and melt-blown PP nonwovens 79.38%, which increases by 19.68%. Additionally, the average resistance of respiration is 94.78 Pa, which meets the protection requirements. Multivariate analysis of variance indicated that the resistance of respiration of the NMCM has significantly dependent on the concentration, voltage, TCD, and flow rate of the spinning solution and the quality factor of the NMCM has dependent on the resistance of respiration. The air permeability ranges from 166.23 to 314.35mm/s, which is inversely proportional to the filtration resistance. As far as the filtration resistance is concerned, the optimal spinning parameters were obtained as follows. The concentration of spinning solution is 15%, the voltage is 27 kV, the TCD is 22 cm, and the flow rate is 2.5 mL/h. The relative error of the BP neural network varies from 0.49505% to 1.49217%, i.e. the error value varies from 0.17 to1.33 Pa. The predicted resistance of respiration corresponding to the optimal process is 68.1374 Pa.


2021 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
Szabolcs Gyula Szerencsés ◽  
Sándor Beszédes ◽  
Zsuzsanna László ◽  
Gábor Veréb ◽  
Balázs Szegedi ◽  
...  

Nowadays, several environmental challenges are present to cope with. One with outstanding importance is the protection of our water supplies, therefore examination of wastewater treatment technology is a priority, especially in the European Union. In this work, the effect of membrane module vibration amplitude on the efficiency of ultrafiltration (UF) was investigated in a vibratory shear enhanced membrane filtration system. Based on the results of model dairy effluent UF and statistical analysis, the maximum vibration level available resulted in the most efficient filtration process, due to the most significant reduction of membrane fouling. From our results it was observed that the permeate fluxes more than doubled, specific energy demand was roughly halved, with almost identical retentions for organic matter, and total filtration resistance was reduced to less than half. Results also showed that setting the optimal operating parameters, an advantageous, efficiency focused, and sustainable wastewater treatment technology can be established.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 314
Author(s):  
Janina Piekutin ◽  
Urszula Kotowska

The article presents research on the treatment of infiltration water with increased ammonium ion and nitrate(V) content through reverse osmosis. Then, research was conducted on the phenomena related to the decrease in the permeability of the membrane used for the research. The search for an appropriate interpretation of the phenomena was carried out using mathematical modeling. Based on the assumptions of the hydraulic model of the filtration resistance, calculations were made to forecast the efficiency of the osmotic membrane used in the discussed process. For this purpose, the following indicators were determined experimentally for the membrane: change in the volumetric flow of treated wastewater during low-pressure filtration, total hydraulic resistance, and component resistances, i.e., the resistance of the “new” membrane and resistances resulting from the reversible and irreversible fouling phenomena. It has been observed that irreversible resistance arises in the short and early stages of the process. The efficiency is determined by reversible resistance, which is confirmed by the literature.


2021 ◽  
Vol 3 ◽  
Author(s):  
Oliver Birrenbach ◽  
Frederik Faust ◽  
Mehrdad Ebrahimi ◽  
Rong Fan ◽  
Peter Czermak

The characterization of membrane fouling provides valuable information about the performance and operational range of filtration processes. The range of operational parameters for the purification and concentration of protein aggregates from cell lysates by ultrafiltration is determined by evaluating the filtration resistances. We therefore investigated the cross-flow ultrafiltration of ovalbumin (OVA) aggregates with a mean size of 304 nm using a 50 nm cut-off ceramic membrane. We observed a 90% decline in flux within the first 10 min of filtration, demanding an in-depth analysis of membrane fouling. Resistance-in-series analysis revealed that the main filtration resistance originated from the cell lysate in the feed solution. Flux decline was monitored at different transmembrane pressures (TMPs) and concentrations for the most significant fouling phenomenon, indicating that the intermediate pore blocking model correlated best with the observed filtration data. The TMP for purification and concentration was set at 1.5 bar based on the prediction of a limited, mostly pressure-independent flux of 12 L·m−2·h−1 for solutions with an OVA aggregate concentration of 0.5 g·L−1. Higher pressure increased the filtration performance only slightly, but led to a linear increase in filtration resistance. A 10-fold variation in protein aggregate concentration strongly influenced filtration performance, with higher protein concentrations increasing the filtration resistance by 413% and causing an 85% decline in flux.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2326-2345
Author(s):  
Xin Zhang ◽  
Guolin Tong ◽  
Yiheng Zhou ◽  
Guoyi Li ◽  
Hui Zhang

The paper sludge conditioning effects of waste polyester textile fibers as skeleton builders combined with ferric chloride (FeCl3) were evaluated and the sludge dewatering mechanism was explored. The catalytic effect of Fe-rich sludge biochar (Fe-SB) on enhancing sludge dewaterability was evaluated. Results showed the combined fiber-FeCl3 conditioning significantly promoted the sludge dewaterability compared with conditioner alone, leading to a 77.5% decrease in specific filtration resistance and a 68.9% increase in net yield. The decrease of extracellular polymeric substances (EPS) contents showed that the EPS were difficult to extract and sludge floc strength was enhanced as a result of chemical reactions such as complexation processes and charge neutralization. Hence, the enhancement of sludge dewaterability was primarily due to the sludge cake with a porous and incompressible structure formed by fiber and FeCl3, and the rigidity structure of fiber. Moreover, the Fe-SB prepared by fiber-FeCl3 conditioning sludge could effectively activate persulfate to enhance the sludge dewaterability, with water content of dewatered sludge decreasing by 14.6%. The Fe-SB had dual functions of the heterogeneous catalyst of persulfate and skeleton builder. This study presents a sludge recycling method that combined physicochemical conditioning and sludge biochar materials prepared by pyrolysis.


2020 ◽  
Vol 67 (4) ◽  
pp. 1239-1249
Author(s):  
Armando Rojas Vargas ◽  
María Elena Trujillo Nieve ◽  
Yudith González Diaz

The distillation process in the Ammoniacal Carbonate Leaching technology was studied at bench-scale and on industrial scale. The dissolved sulfur effect in the Product-liquor that feeds to the columns, on the Basic Nickel Carbonate (BNC) properties and the operation expenses was determined. When increasing the sulfur in the liquor, we augment the selectivity towards the sulfate formation in the BNC molecule; therefore the energy consumption to the BNC thermal decomposition in the calcination process increases. Also, the nickel dissolved in the columns effluent increases due to complex reaction with [SO42–] and [S2O32–] ions, thus the expenses for consumption precipitation reagent increase too. Feeding carbonated liquor in the range 1.60 ≤ NH3/CO2 < 1.80 and CO2-rich solution increases the CO2 in the BNC with decreasing in sulfate; then, the mean diameter particle increases, the filtration resistance and the cake moisture diminish, which augments the productivity and reduces the energy consumption in the process of filtration and calcination. Keeping a pH between 8.4 and 8.7 in the columns outlet the greatest economic benefit is obtained of 0,125 ($ · h–1) per (m3 · h–1) of Product-liquor.


2020 ◽  
Vol 82 (9) ◽  
pp. 1868-1876
Author(s):  
Hideo Maruyama ◽  
Hideshi Seki

Abstract The effect of ethylated soy protein-based bioflocculant (EtSP) as a filter aid reagent was investigated. The efficiency of EtSP as a filter aid was evaluated in terms of the specific cake resistance, α, and was compared with chitosan and polyaluminum chloride (PAC). Diatomite and kaolin were used as model particles. Total filtration resistance, R, decreased with increasing flocculant dosage (wt.%, flocculant/particle) and was almost constant in the range of 1 wt.% or more for both particles. The α value was significantly decreased from 1.01 × 1011 to 9.01 × 1010 m/kg for diatomite and from 5.11 × 1010 to 5.20 × 109 m/kg for kaolin by the addition of EtSP in the case of 1.0 wt.%. The α value for cakes formed by EtSP was much smaller than that formed by chitosan and PAC. In the case of diatomite, in the dose range of 0.5–1.0 wt.%, the α value for cakes formed by EtSP and chitosan was almost the same. However, at the excess dose of 2.0 wt.% over, the α value formed by chitosan abruptly increased. In the case of kaolin, in the dose range of 1.0–2.0 wt.%, the α values of chitosan and PAC were mostly the same, however, these values were larger by ca. nine times than that of EtSP.


Sign in / Sign up

Export Citation Format

Share Document