Local convergence of parameter based method with six and eighth order of convergence

2020 ◽  
Vol 58 (4) ◽  
pp. 841-853
Author(s):  
Ali Saleh Alshomrani ◽  
Ramandeep Behl ◽  
P. Maroju
2021 ◽  
Vol 66 (4) ◽  
pp. 757-768
Author(s):  
Ioannis K. Argyros ◽  
◽  
Santhosh George ◽  
Kedarnath Senapati ◽  
◽  
...  

We present the local convergence of a Newton-type solver for equations involving Banach space valued operators. The eighth order of convergence was shown earlier in the special case of the k-dimensional Euclidean space, using hypotheses up to the eighth derivative although these derivatives do not appear in the method. We show convergence using only the rst derivative. This way we extend the applicability of the methods. Numerical examples are used to show the convergence conditions. Finally, the basins of attraction of the method, on some test problems are presented.


Algorithms ◽  
2016 ◽  
Vol 9 (4) ◽  
pp. 65 ◽  
Author(s):  
Ioannis Argyros ◽  
Ramandeep Behl ◽  
Sandile Motsa

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


Algorithms ◽  
2015 ◽  
Vol 8 (3) ◽  
pp. 645-655 ◽  
Author(s):  
Ioannis Argyros ◽  
Ramandeep Behl ◽  
S.S. Motsa

2015 ◽  
Vol 6 (1) ◽  
pp. 223
Author(s):  
Munish Kansal ◽  
V. Kanwar ◽  
Saurabh Bhatia

2011 ◽  
Vol 62 (12) ◽  
pp. 4619-4626 ◽  
Author(s):  
F. Soleymani ◽  
S. Karimi Vanani

2011 ◽  
Vol 24 (12) ◽  
pp. 2082-2086 ◽  
Author(s):  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

2019 ◽  
Vol 17 (05) ◽  
pp. 1940017
Author(s):  
Ali Saleh Alshomrani ◽  
Ioannis K. Argyros ◽  
Ramandeep Behl

Our principle aim in this paper is to present a new reconstruction of classical Chebyshev–Halley schemes having optimal fourth and eighth-order of convergence for all parameters [Formula: see text] unlike in the earlier studies. In addition, we analyze the local convergence of them by using hypotheses requiring the first-order derivative of the involved function [Formula: see text] and the Lipschitz conditions. In addition, we also formulate their theoretical radius of convergence. Several numerical examples originated from real life problems demonstrate that they are applicable to a broad range of scalar equations, where previous studies cannot be used. Finally, a dynamical study of them also demonstrates that bigger and more promising basins of attractions are obtained.


Sign in / Sign up

Export Citation Format

Share Document