scholarly journals Extended local convergence for Newton-type solver under weak conditions

2021 ◽  
Vol 66 (4) ◽  
pp. 757-768
Author(s):  
Ioannis K. Argyros ◽  
◽  
Santhosh George ◽  
Kedarnath Senapati ◽  
◽  
...  

We present the local convergence of a Newton-type solver for equations involving Banach space valued operators. The eighth order of convergence was shown earlier in the special case of the k-dimensional Euclidean space, using hypotheses up to the eighth derivative although these derivatives do not appear in the method. We show convergence using only the rst derivative. This way we extend the applicability of the methods. Numerical examples are used to show the convergence conditions. Finally, the basins of attraction of the method, on some test problems are presented.

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1020
Author(s):  
Syahmi Afandi Sariman ◽  
Ishak Hashim ◽  
Faieza Samat ◽  
Mohammed Alshbool

In this study, we propose an extension of the modified Newton-Househölder methods to find multiple roots with unknown multiplicity of nonlinear equations. With four functional evaluations per iteration, the proposed method achieves an optimal eighth order of convergence. The higher the convergence order, the quicker we get to the root with a high accuracy. The numerical examples have shown that this scheme can compete with the existing methods. This scheme is also stable across all of the functions tested based on the graphical basins of attraction.


2020 ◽  
Vol 58 (4) ◽  
pp. 841-853
Author(s):  
Ali Saleh Alshomrani ◽  
Ramandeep Behl ◽  
P. Maroju

Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1017 ◽  
Author(s):  
Alicia Cordero ◽  
Ivan Girona ◽  
Juan R. Torregrosa

In this manuscript, we propose several iterative methods for solving nonlinear equations whose common origin is the classical Chebyshev’s method, using fractional derivatives in their iterative expressions. Due to the symmetric duality of left and right derivatives, we work with right-hand side Caputo and Riemann–Liouville fractional derivatives. To increase as much as possible the order of convergence of the iterative scheme, some improvements are made, resulting in one of them being of 3 α -th order. Some numerical examples are provided, along with an study of the dependence on initial estimations on several test problems. This results in a robust performance for values of α close to one and almost any initial estimation.


2022 ◽  
Vol 40 ◽  
pp. 1-18
Author(s):  
J. R. Sharma ◽  
Ioannis K. Argyros ◽  
Deepak Kumar

We introduce a new faster  King-Werner-type derivative-free method for solving nonlinear equations. The local as well as semi-local  convergence analysis is presented under weak center Lipschitz and Lipschitz conditions. The convergence order as well as the convergence radii are also provided. The radii are compared to the corresponding ones from similar methods. Numerical examples further validate the theoretical results.


2022 ◽  
Vol 21 ◽  
pp. 9-16
Author(s):  
O. Ababneh

The purpose of this paper is to propose new modified Newton’s method for solving nonlinear equations and free from second derivative. Convergence results show that the order of convergence is four. Several numerical examples are given to illustrate that the new iterative algorithms are effective.In the end, we present the basins of attraction to observe the fractal behavior and dynamical aspects of the proposed algorithms.


2021 ◽  
Vol 5 (1) ◽  
pp. 300-305
Author(s):  
Christopher I. Argyros ◽  
◽  
Michael Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George ◽  
...  

Local convergence of a family of sixth order methods for solving Banach space valued equations is considered in this article. The local convergence analysis is provided using only the first derivative in contrast to earlier works on the real line using the seventh derivative. This way the applicability is expanded for these methods. Numerical examples complete the article.


2019 ◽  
Vol 17 (08) ◽  
pp. 1950047
Author(s):  
Rajni Sharma ◽  
Janak Raj Sharma ◽  
Nitin Kalra

In this work, a modified Newton–Özban composition of convergence order six for solving nonlinear systems is presented. The first two steps of proposed scheme are based on third-order method given by Özban [Özban, A. Y. [2004] “Some new variants of Newton’s method,” Appl. Math. Lett. 17, 677–682.] for solving scalar equations. Computational efficiency of the presented method is discussed and compared with well-known existing methods. Numerical examples are studied to demonstrate the accuracy of the proposed method. The basins of attraction of some of the existing methods along with the proposed method are given to exhibit their performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mohammed Barrada ◽  
Mariya Ouaissa ◽  
Yassine Rhazali ◽  
Mariyam Ouaissa

In this paper, we present a new family of methods for finding simple roots of nonlinear equations. The convergence analysis shows that the order of convergence of all these methods is three. The originality of this family lies in the fact that these sequences are defined by an explicit expression which depends on a parameter p where p is a nonnegative integer. A first study on the global convergence of these methods is performed. The power of this family is illustrated analytically by justifying that, under certain conditions, the method convergence’s speed increases with the parameter p. This family’s efficiency is tested on a number of numerical examples. It is observed that our new methods take less number of iterations than many other third-order methods. In comparison with the methods of the sixth and eighth order, the new ones behave similarly in the examples considered.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ramandeep Behl ◽  
S. S. Motsa

Based on well-known fourth-order Ostrowski’s method, we proposed many new interesting optimal families of eighth-order multipoint methods without memory for obtaining simple roots. Its geometric construction consists in approximatingfn′atznin such a way that its average with the known tangent slopesfn′atxnandynis the same as the known weighted average of secant slopes and then we apply weight function approach. The adaptation of this strategy increases the convergence order of Ostrowski's method from four to eight and its efficiency index from 1.587 to 1.682. Finally, a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal eighth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, it is also noted that larger basins of attraction belong to our methods although the other methods are slow and have darker basins while some of the methods are too sensitive upon the choice of the initial value.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 942 ◽  
Author(s):  
Prem B. Chand ◽  
Francisco I. Chicharro ◽  
Neus Garrido ◽  
Pankaj Jain

In this paper, using the idea of weight functions on the Potra–Pták method, an optimal fourth order method, a non optimal sixth order method, and a family of optimal eighth order methods are proposed. These methods are tested on some numerical examples, and the results are compared with some known methods of the corresponding order. It is proved that the results obtained from the proposed methods are compatible with other methods. The proposed methods are tested on some problems related to engineering and science. Furthermore, applying these methods on quadratic and cubic polynomials, their stability is analyzed by means of their basins of attraction.


Sign in / Sign up

Export Citation Format

Share Document