scholarly journals A family of modified Ostrowski’s methods with optimal eighth order of convergence

2011 ◽  
Vol 24 (12) ◽  
pp. 2082-2086 ◽  
Author(s):  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


2020 ◽  
Vol 58 (4) ◽  
pp. 841-853
Author(s):  
Ali Saleh Alshomrani ◽  
Ramandeep Behl ◽  
P. Maroju

2015 ◽  
Vol 6 (1) ◽  
pp. 223
Author(s):  
Munish Kansal ◽  
V. Kanwar ◽  
Saurabh Bhatia

2011 ◽  
Vol 62 (12) ◽  
pp. 4619-4626 ◽  
Author(s):  
F. Soleymani ◽  
S. Karimi Vanani

2018 ◽  
Vol 173 ◽  
pp. 03024
Author(s):  
Tugal Zhanlav ◽  
Ochbadrakh Chuluunbaatar ◽  
Vandandoo Ulziibayar

In this paper we propose a generating function method for constructing new two and three-point iterations withp(p= 4, 8) order of convergence. This approach allows us to derive a new family of optimal order iterative methods that include well known methods as special cases. Necessary and sufficient conditions forp-th (p= 4, 8) order convergence of the proposed iterations are given in terms of parameters τnand αn. We also propose some generating functions for τnand αn. We develop a unified representation of all optimal eighth-order methods. The order of convergence of the proposed methods is confirmed by numerical experiments.


2019 ◽  
Vol 16 (04) ◽  
pp. 1843002 ◽  
Author(s):  
Ramandeep Behl ◽  
Fiza Zafar ◽  
Ali Saleh Alshormani ◽  
Moin-Ud-Din Junjua ◽  
Nusrat Yasmin

We construct an optimal eighth-order scheme which will work for multiple zeros with multiplicity [Formula: see text], for the first time. Earlier, the maximum convergence order of multi-point iterative schemes was six for multiple zeros in the available literature. So, the main contribution of this study is to present a new higher-order and as well as optimal scheme for multiple zeros for the first time. In addition, we present an extensive convergence analysis with the main theorem which confirms theoretically eighth-order convergence of the proposed scheme. Moreover, we consider several real life problems which contain simple as well as multiple zeros in order to compare with the existing robust iterative schemes. Finally, we conclude on the basis of obtained numerical results that our iterative methods perform far better than the existing methods in terms of residual error, computational order of convergence and difference between the two consecutive iterations.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mohammed Barrada ◽  
Mariya Ouaissa ◽  
Yassine Rhazali ◽  
Mariyam Ouaissa

In this paper, we present a new family of methods for finding simple roots of nonlinear equations. The convergence analysis shows that the order of convergence of all these methods is three. The originality of this family lies in the fact that these sequences are defined by an explicit expression which depends on a parameter p where p is a nonnegative integer. A first study on the global convergence of these methods is performed. The power of this family is illustrated analytically by justifying that, under certain conditions, the method convergence’s speed increases with the parameter p. This family’s efficiency is tested on a number of numerical examples. It is observed that our new methods take less number of iterations than many other third-order methods. In comparison with the methods of the sixth and eighth order, the new ones behave similarly in the examples considered.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1020
Author(s):  
Syahmi Afandi Sariman ◽  
Ishak Hashim ◽  
Faieza Samat ◽  
Mohammed Alshbool

In this study, we propose an extension of the modified Newton-Househölder methods to find multiple roots with unknown multiplicity of nonlinear equations. With four functional evaluations per iteration, the proposed method achieves an optimal eighth order of convergence. The higher the convergence order, the quicker we get to the root with a high accuracy. The numerical examples have shown that this scheme can compete with the existing methods. This scheme is also stable across all of the functions tested based on the graphical basins of attraction.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 198 ◽  
Author(s):  
Janak Sharma ◽  
Ioannis Argyros ◽  
Sunil Kumar

We generalize a family of optimal eighth order weighted-Newton methods to Banach spaces and study their local convergence. In a previous study, the Taylor expansion of higher order derivatives is employed which may not exist or may be very expensive to compute. However, the hypotheses of the present study are based on the first Fréchet-derivative only, thereby the application of methods is expanded. New analysis also provides the radius of convergence, error bounds and estimates on the uniqueness of the solution. Such estimates are not provided in the approaches that use Taylor expansions of derivatives of higher order. Moreover, the order of convergence for the methods is verified by using computational order of convergence or approximate computational order of convergence without using higher order derivatives. Numerical examples are provided to verify the theoretical results and to show the good convergence behavior.


Sign in / Sign up

Export Citation Format

Share Document