Densities, Ultrasonic Velocities, Excess Properties and IR Spectra of Binary Liquid Mixtures of Organic Esters (Ethyl Lactate, Some Organic Carbonates)

2017 ◽  
Vol 46 (2) ◽  
pp. 305-330 ◽  
Author(s):  
S. Vani Latha ◽  
G. Little Flower ◽  
K. Rayapa Reddy ◽  
C. V. Nageswara Rao ◽  
A. Ratnakar
Author(s):  
Ch. Praveen Babu ◽  
G. Pavan Kumar ◽  
B. Nagarjun ◽  
K. Samatha

Theoretical velocities of binary liquid mixtures of 1-bromopropane with chlorobenzene at 2 MHz and four different temperatures 303.15, 308.15, 313.15 and 318.15 K, have been evaluated as a function of concentration and temperature. The experimental values are compared with theoretical models of liquid mixtures such as Nomoto, Van Dael-Vangeel, Impedance Relation, Rao’s Specific Velocity Method, Junjie’s relations and Free Length Theory. In the chosen system there is a good agreement between experimental and theoretical values calculated by Nomoto’s theory. The deviation in the variation of U2exp/U2imx from unity has also been evaluated for explaining the non ideality in the mixtures. The results are explained in terms of intermolecular interactions occurring in these binary liquid mixtures.


2011 ◽  
Vol 8 (3) ◽  
pp. 977-981
Author(s):  
CH. Srinivasu ◽  
K. Narendra ◽  
CH. Kalpana

Theoretical velocities of binary liquid mixtures of anisaldehyde with toluene at 303.15, 308.15, 313.15 and 318.15 K have been evaluated by using theoretical models of liquid mixtures such as Nomoto, Van Dael-Vangeel, Schaff’s collision factor theory and Junjie’s relations. Density and ultrasonic velocity of these mixtures have also been measured as a function of concentration and temperature and the experimental values are compared with the theoretical values. A good agreement has been found between experimental and Nomoto’s theoretical ultrasonic velocities. The results are explained in terms of intermolecular interactions occurring in these binary liquid mixtures.


Sign in / Sign up

Export Citation Format

Share Document