scholarly journals The de Almeida–Thouless Line in Hierarchical Quantum Spin Glasses

2021 ◽  
Vol 186 (1) ◽  
Author(s):  
Chokri Manai ◽  
Simone Warzel

AbstractWe determine explicitly and discuss in detail the effects of the joint presence of a longitudinal and a transversal (random) magnetic field on the phases of the Random Energy Model and its hierarchical generalization, the GREM. Our results extent known results both in the classical case of vanishing transversal field and in the quantum case for vanishing longitudinal field. Following Derrida and Gardner, we argue that the longitudinal field has to be implemented hierarchically also in the Quantum GREM. We show that this ensures the shrinking of the spin glass phase in the presence of the magnetic fields as is also expected for the Quantum Sherrington–Kirkpatrick model.

Author(s):  
G. Mossi ◽  
A. Scardicchio

By considering the quantum dynamics of a transverse-field Ising spin glass on the Bethe lattice, we find the existence of a many-body localized (MBL) region at small transverse field and low temperature. The region is located within the thermodynamic spin glass phase. Accordingly, we conjecture that quantum dynamics inside the glassy region is split into a small MBL region and a large delocalized (but not necessarily ergodic) region. This has implications for the analysis of the performance of quantum adiabatic algorithms. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.


2010 ◽  
Vol 24 (14) ◽  
pp. 2091-2106 ◽  
Author(s):  
C. M. NEWMAN ◽  
D. L. STEIN

We review the structure of the spin glass phase in the infinite-range Sherrington–Kirkpatrick model and the short-range Edwards–Anderson (EA) model. While the former is now believed to be understood, the nature of the latter remains unresolved. However, considerable insight can be gained through the use of the metastate, a mathematical construct that provides a probability measure on the space of all thermodynamic states. Using tools provided by the metastate construct, possibilities for the nature of the organization of pure states in short-range spin glasses can be considerably narrowed. We review the concept of the "ordinary" metastate, and also newer ideas on the excitation metastate, which has been recently used to prove existence of only a single pair of ground states in the EA Ising model in the half-plane. We close by presenting a new result, using metastate methods, on the number of mixed states allowed in the EA model.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1035-C8-1036 ◽  
Author(s):  
H. Pinkvos ◽  
F. N. Gygax ◽  
E. Lippelt ◽  
Ch. Schwink

Author(s):  
N. B. Slater

SynopsisThe writer's theory of unimolecular dissociation rates, based on the treatment of the molecule as a harmonically vibrating system, is put in a form which covers quantum as well as classical mechanics. The classical rate formulæ are as before, and are also the high-temperature limits of the new quantum formulæ. The high-pressure first-order rate k∞ is found first from the Gaussian distribution of co-ordinates and momenta of harmonic systems, and is justified for the quantum-mechanical case by Bartlett and Moyal's phase-space distributions. This leads to a re-formulation of k∞ as a molecular dissociation probability averaged over a continuum of states, and to a general rate for any pressure of the gas.The high-pressure rate k∞ is of the form ve-F/kT, where v and F depend, in the quantum case, on the temperature T; but v is always between the highest and lowest fundamental vibration frequencies of the molecule. Concerning the decline of the general rate k with pressure at fixed temperature, k/k∞ is to a certain approximation the same function of as was tabulated earlier for the classical case, apart from a constant factor changing the pressure scale in the quantum case.


1987 ◽  
Vol 112 (4) ◽  
pp. 553-566 ◽  
Author(s):  
J. Fröhlich ◽  
B. Zegarlinski

Sign in / Sign up

Export Citation Format

Share Document