scholarly journals Harmonic oscillator in Snyder space: The classical case and the quantum case

Pramana ◽  
2010 ◽  
Vol 74 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Carlos Leiva
Author(s):  
N. B. Slater

SynopsisThe writer's theory of unimolecular dissociation rates, based on the treatment of the molecule as a harmonically vibrating system, is put in a form which covers quantum as well as classical mechanics. The classical rate formulæ are as before, and are also the high-temperature limits of the new quantum formulæ. The high-pressure first-order rate k∞ is found first from the Gaussian distribution of co-ordinates and momenta of harmonic systems, and is justified for the quantum-mechanical case by Bartlett and Moyal's phase-space distributions. This leads to a re-formulation of k∞ as a molecular dissociation probability averaged over a continuum of states, and to a general rate for any pressure of the gas.The high-pressure rate k∞ is of the form ve-F/kT, where v and F depend, in the quantum case, on the temperature T; but v is always between the highest and lowest fundamental vibration frequencies of the molecule. Concerning the decline of the general rate k with pressure at fixed temperature, k/k∞ is to a certain approximation the same function of as was tabulated earlier for the classical case, apart from a constant factor changing the pressure scale in the quantum case.


2000 ◽  
Vol 15 (30) ◽  
pp. 4797-4810 ◽  
Author(s):  
JOSÉ F. CARIÑENA ◽  
JANUSZ GRABOWSKI ◽  
GIUSEPPE MARMO

We define quantum bi-Hamiltonian systems, by analogy with the classical case, as derivations in operator algebras which are inner derivations with respect to two compatible associative structures. We find such structures by means of the associative version of Nijenhuis tensors. Explicit examples, e.g. for the harmonic oscillator, are given.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 552 ◽  
Author(s):  
Simon Saunders

The Gibbs Paradox is essentially a set of open questions as to how sameness of gases or fluids (or masses, more generally) are to be treated in thermodynamics and statistical mechanics. They have a variety of answers, some restricted to quantum theory (there is no classical solution), some to classical theory (the quantum case is different). The solution offered here applies to both in equal measure, and is based on the concept of particle indistinguishability (in the classical case, Gibbs’ notion of ‘generic phase’). Correctly understood, it is the elimination of sequence position as a labelling device, where sequences enter at the level of the tensor (or Cartesian) product of one-particle state spaces. In both cases it amounts to passing to the quotient space under permutations. ‘Distinguishability’, in the sense in which it is usually used in classical statistical mechanics, is a mathematically convenient, but physically muddled, fiction.


2009 ◽  
Vol 9 (3&4) ◽  
pp. 336-360
Author(s):  
M.B. Hastings ◽  
A.W. Harrow

We introduce the concept of quantum tensor product expanders. These generalize the concept of quantum expanders, which are quantum maps that are efficient randomizers and use only a small number of Kraus operators. Quantum tensor product expanders act on several copies of a given system, where the Kraus operators are tensor products of the Kraus operator on a single system. We begin with the classical case, and show that a classical two-copy expander can be used to produce a quantum expander. We then discuss the quantum case and give applications to the Solovay-Kitaev problem. We give probabilistic constructions in both classical and quantum cases, giving tight bounds on the expectation value of the largest nontrivial eigenvalue in the quantum case.


2021 ◽  
Vol 186 (1) ◽  
Author(s):  
Chokri Manai ◽  
Simone Warzel

AbstractWe determine explicitly and discuss in detail the effects of the joint presence of a longitudinal and a transversal (random) magnetic field on the phases of the Random Energy Model and its hierarchical generalization, the GREM. Our results extent known results both in the classical case of vanishing transversal field and in the quantum case for vanishing longitudinal field. Following Derrida and Gardner, we argue that the longitudinal field has to be implemented hierarchically also in the Quantum GREM. We show that this ensures the shrinking of the spin glass phase in the presence of the magnetic fields as is also expected for the Quantum Sherrington–Kirkpatrick model.


2007 ◽  
Vol 57 (6) ◽  
Author(s):  
S. Pulmannová ◽  
E. Vinceková

AbstractRelations between generalized effect algebras and the sets of classical and quantum observables endowed with an ordering recently introduced in [GUDDER, S.: An order for quantum observables, Math. Slovaca 56 (2006), 573–589] are studied. In the classical case, a generalized OMP, while in the quantum case a weak generalized OMP is obtained. Existence of infima for arbitrary sets and suprema for above bounded sets in the quantum case is shown. Compatibility in the sense of Mackey is characterized.


2014 ◽  
Vol 4 (1) ◽  
pp. 404-426
Author(s):  
Vincze Gy. Szasz A.

Phenomena of damped harmonic oscillator is important in the description of the elementary dissipative processes of linear responses in our physical world. Its classical description is clear and understood, however it is not so in the quantum physics, where it also has a basic role. Starting from the Rosen-Chambers restricted variation principle a Hamilton like variation approach to the damped harmonic oscillator will be given. The usual formalisms of classical mechanics, as Lagrangian, Hamiltonian, Poisson brackets, will be covered too. We shall introduce two Poisson brackets. The first one has only mathematical meaning and for the second, the so-called constitutive Poisson brackets, a physical interpretation will be presented. We shall show that only the fundamental constitutive Poisson brackets are not invariant throughout the motion of the damped oscillator, but these show a kind of universal time dependence in the universal time scale of the damped oscillator. The quantum mechanical Poisson brackets and commutation relations belonging to these fundamental time dependent classical brackets will be described. Our objective in this work is giving clearer view to the challenge of the dissipative quantum oscillator.


Sign in / Sign up

Export Citation Format

Share Document