Effect of the second outlet location and the applied magnetic field within a ventilated cubic cavity crossed by a nanofluid on mixed convection mode: best configurations

2019 ◽  
Vol 139 (3) ◽  
pp. 2243-2264 ◽  
Author(s):  
Seddik Kherroubi ◽  
Karim Ragui ◽  
Abdelghani Bensaci ◽  
Nabila Labsi ◽  
Abdelkader Boutra ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Mekonnen Shiferaw Ayano ◽  
Stephen T. Sikwila ◽  
Stanford Shateyi

Mixed convection flow through a rectangular duct with at least one of the sides of the walls of the rectangle being isothermal under the influence of transversely applied magnetic field has been analyzed numerically in this study. The governing differential equations of the problem have been transformed into a system of nondimensional differential equations and then solved numerically. The dimensionless velocity, microrotation components, and temperature profiles are displayed graphically showing the effects of various values of the parameters present in the problem. The results showed that the flow field is notably influenced by the considered parameters. It is found that increasing the aspect ratio increases flow reversal, commencement of the flow reversal is observed after some critical value, and the applied magnetic field increases the flow reversal in addition to flow retardation. The microrotation components flow in opposite direction; also it is found that one component of the microrotation will show no rotational effect around the center of the duct.


2012 ◽  
Vol 11 (3) ◽  
pp. 105-112
Author(s):  
K R Jayakumar ◽  
A h Srinivasa ◽  
A T Eswara

An analysis is performed to investigate the mixed convection flow over a vertical cone with an applied magnetic field when the axis of the cone is in line with the flow. The results have been obtained for assisting and opposing flows. The partial differential equations governing the non-similar flow have been solved by an implicit finite difference scheme in combination with the quasilinearization technique. Numerical results are reported here to account the effects of magnetic field in presence of buoyancy parameter at different stream wise locations on skin friction and heat transfer coefficients.


Sign in / Sign up

Export Citation Format

Share Document