backward facing step
Recently Published Documents


TOTAL DOCUMENTS

1289
(FIVE YEARS 206)

H-INDEX

51
(FIVE YEARS 6)

Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Iosif Moulinos ◽  
Christos Manopoulos ◽  
Sokrates Tsangaris

The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.


Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 35
Author(s):  
Ming Teng ◽  
Ugo Piomelli

The development of secondary instabilities in a boundary layer over a backward-facing step is investigated numerically. Two step heights are considered, h/δo*=0.5 and 1.0 (where δo* is the displacement thickness at the step location), in addition to a reference flat-plate case. A case with a realistic freestream-velocity distribution is also examined. A controlled K-type transition is initiated using a narrow ribbon upstream of the step, which generates small and monochromatic perturbations by periodic blowing and suction. A well-resolved direct numerical simulation is performed. The step height and the imposed freestream-velocity distribution exert a significant influence on the transition process. The results for the h/δo*=1.0 case exhibit a rapid transition primarily due to the Kelvin–Helmholtz instability downstream of step; non-linear interactions already occur within the recirculation region, and the initial symmetry and periodicity of the flow are lost by the middle stage of transition. In contrast, case h/δo*=0.5 presents a transition road map in which transition occurs far downstream of the step, and the flow remains spatially symmetric and temporally periodic until the late stage of transition. A realistic freestream-velocity distribution (which induces an adverse pressure gradient) advances the onset of transition to turbulence, but does not fundamentally modify the flow features observed in the zero-pressure gradient case. Considering the budgets of the perturbation kinetic energy, both the step and the induced pressure-gradient increase, rather than modify, the energy transfer.


2022 ◽  
Author(s):  
Matar M. Rosen ◽  
Meiran Miezner ◽  
Anton Ronis ◽  
Igal Kronhaus ◽  
Ian Jacobi

2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Thomas Schaub ◽  
Frederik Arbeiter ◽  
Wolfgang Hering ◽  
Robert Stieglitz

Abstract In this paper, we present experimental results for a non-isothermal vertical confined backward facing step conducted with a low-Prandtl number fluid. The eutectic alloy gallium–indium–tin is used as the working fluid. We conducted experiments for different Reynolds and Richardson numbers covering both forced and mixed convection regimes. Time-averaged velocity profiles were measured at six streamwise positions along the test section center-plane with so-called permanent magnet probes. The local Nusselt number was measured in streamwise and spanwise directions along the heating plate mounted right after the step. We further ran RANS simulations of the experiment to study the qualitative influence of assuming a constant specific heat flux thermal boundary condition for the experiment heating plate. The measured velocity profiles show the expected behavior for both studied convection regimes, while the measured streamwise local Nusselt number profiles do not. This is explained by how the heating plate thermal boundary condition is defined. We performed an order of magnitude estimate to estimate the forced- to mixed convection transition onset. The estimate shows good agreement with the experimental data, although further measurements are needed to further validate the estimated transition threshold. The measurement of fluctuating quantities remains an open task to be addressed in future experiments, since the permanent magnet probe measurement equation needs further adjustments. Graphical Abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shailendra Rana ◽  
Hari Bahadur Dura ◽  
Sudip Bhattrai ◽  
Rajendra Shrestha

Two-dimensional numerical simulations are conducted to study forced convection flow of different water-based nanofluids (ZnO, Al2O3, and SiO2) with volume fractions ( ϕ ) = 0–5% and fixed nanoparticle size (dp) = 20 nm for Reynolds numbers (Re) = 50–225 over a double backward-facing step with an expansion ratio (ER) = 2 under constant heat flux (q″ = 3000 W/m2) condition using the finite volume method. Results indicate that the local Nusselt number increases with volume fraction and Reynolds number for all working fluids. In comparison to water, the maximum heat transfer augmentation of about 21.22% was achieved by using water-SiO2 nanofluid at Re = 225 with ϕ  = 5% and dp = 20 nm. Under similar conditions, the Al2O3 and ZnO nanofluids demonstrated 14.23% and 11.86% augmentation in heat transfer in comparison to water. The skin friction coefficient decreases with the increase in Re for all working fluids. No significant differences are observed in the values of skin friction coefficient among all working fluids at a particular Re. These results indicate that the heat transfer enhancement has been achieved with no increased energy requirements. In addition, the velocity increases with the rise in Re, with SiO2 nanofluid exhibiting the highest velocity as compared to other working fluids.


Author(s):  
Wenming Yang ◽  
Boshi Fang ◽  
Beiying Liu

Abstract Backward-facing step (BFS) flow is a benchmark case study in fluid mechanics. Its control by means of electromagnetic actuation has attracted great interest in recent years. This paper focuses on the effects of a uniform stationary magnetic field on the laminar ferrofluid BFS flows for the Reynolds number range 0.1=Re=400 and different expansion ratios. The coupled ferrohydrodynamic equations, including the microscopically derived magnetization equation, for a two-dimensional domain are solved numerically by an Open FOAM solver after validation and a test of accuracy. The application of a magnetic field causes the corner vortices in the concave corner behind the step to be retracted compared with their positions in the absence of a magnetic field. The maximum percentage of the normalized decrease in length of these eddies reaches 41.23% in our simulations. For small Reynolds numbers (<10), the flow separation points on the convex corner are lowered in the presence of a magnetic field. Furthermore, the dimensionless total pressure drop between the channel inlet and outlet decreases almost linearly with Reynolds number Re, but the drop is greater when a magnetic field is applied. On the whole, the normalized recirculation length of the corner vortex increases nonlinearly with increasing magnetic Reynolds number Rem and Brownian Péclet number Pe, but it tends to constant values in the limits Re ≪ 1 and Re ≫ 1.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012013
Author(s):  
V I Terekhov ◽  
A Yu Dyachenko ◽  
V L Zhdanov ◽  
Ya J Smulsky

Abstract The paper presents the experimental results on the control of heat transfer enhancement behind the backward-facing step at Re = 4000. The flow is controlled by a pair of longitudinal vortex generators (LVGs) installed at the step edge. The pair of vortex generators (VG) consists of two plates positioned symmetrically relative to the flow. The influence of the height, the angle of VG installation relative to the flow, the distance between VG pairs and the shape of the plate on local and average heat transfer is investigated.


Sign in / Sign up

Export Citation Format

Share Document