scholarly journals On the Sylvester–Gallai and the orchard problem for pseudoline arrangements

2017 ◽  
Vol 77 (2) ◽  
pp. 164-174 ◽  
Author(s):  
Jürgen Bokowski ◽  
Piotr Pokora
2021 ◽  
Vol 21 (1) ◽  
pp. 15-22
Author(s):  
Aaron Lin ◽  
Konrad Swanepoel

Abstract An ordinary hypersphere of a set of points in real d-space, where no d + 1 points lie on a (d - 2)-sphere or a (d - 2)-flat, is a hypersphere (including the degenerate case of a hyperplane) that contains exactly d + 1 points of the set. Similarly, a (d + 2)-point hypersphere of such a set is one that contains exactly d + 2 points of the set. We find the minimum number of ordinary hyperspheres, solving the d-dimensional spherical analogue of the Dirac–Motzkin conjecture for d ⩾ 3. We also find the maximum number of (d + 2)-point hyperspheres in even dimensions, solving the d-dimensional spherical analogue of the orchard problem for even d ⩾ 4.


1986 ◽  
Vol 93 (2) ◽  
pp. 98-104 ◽  
Author(s):  
Thomas Tracy Allen
Keyword(s):  

10.37236/737 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Leah Wrenn Berman

A simplicial arrangement of pseudolines is a collection of topological lines in the projective plane where each region that is formed is triangular. This paper refines and develops David Eppstein's notion of a kaleidoscope construction for symmetric pseudoline arrangements to construct and analyze several infinite families of simplicial pseudoline arrangements with high degrees of geometric symmetry. In particular, all simplicial pseudoline arrangements with the symmetries of a regular $k$-gon and three symmetry classes of pseudolines, consisting of the mirrors of the $k$-gon and two other symmetry classes, plus sometimes the line at infinity, are classified, and other interesting families (with more symmetry classes of pseudolines) are discussed.


1985 ◽  
Vol 38 (6) ◽  
pp. 725-732 ◽  
Author(s):  
Jacob E. Goodman ◽  
Richard Pollack

10.37236/8934 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Victor Chepoi ◽  
Kolja Knauer ◽  
Manon Philibert

We investigate the structure of two-dimensional partial cubes, i.e., of isometric subgraphs of hypercubes whose vertex set defines a set family of VC-dimension at most 2. Equivalently, those are the partial cubes which are not contractible to the 3-cube $Q_3$ (here contraction means contracting the edges corresponding to the same coordinate of the hypercube). We show that our graphs can be obtained from two types of combinatorial cells (gated cycles and gated full subdivisions of complete graphs) via amalgams. The cell structure of two-dimensional partial cubes enables us to establish a variety of results. In particular, we prove that all partial cubes of VC-dimension 2 can be extended to ample aka lopsided partial cubes of VC-dimension 2, yielding that the set families defined by such graphs satisfy the sample compression conjecture by Littlestone and Warmuth (1986) in a strong sense. The latter is a central conjecture of the area of computational machine learning, that is far from being solved even for general set systems of VC-dimension 2. Moreover, we point out relations to tope graphs of COMs of low rank and region graphs of pseudoline arrangements.


2009 ◽  
pp. 133-140
Author(s):  
Ross Honsberger
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document