set systems
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 61)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 98 ◽  
pp. 103393
Author(s):  
Amin Bahmanian ◽  
Sadegheh Haghshenas
Keyword(s):  

Author(s):  
Anupam Gupta ◽  
Amit Kumar ◽  
Viswanath Nagarajan ◽  
Xiangkun Shen

2021 ◽  
Author(s):  
◽  
William Critchlow

<p>This thesis is inspired by the observation that we have no good random model for matroids. That stands in contrast to graphs, which admit a number of elegant random models. As a result we have relatively little understanding of the properties of a "typical" matroid. Acknowledging the difficulty of the general case, we attempt to gain a grasp on randomness in some chosen classes of matroids.  Firstly, we consider sparse paving matroids, which are conjectured to dominate the class of matroids (that is to say, asymptotically almost all matroids would be sparse paving). If this conjecture were true, then many results on properties of the random sparse paving matroid would also hold for the random matroid. Sparse paving matroids have limited richness of structure, making counting arguments in particular more feasible than for general matroids. This enables us to prove a number of asymptotic results, particularly with regards to minors.  Secondly, we look at Graham-Sloane matroids, a special subset of sparse paving matroids with even more limited structure - in fact Graham-Sloane matroids on a labelled groundset can be randomly generated by a process as simple as independently including certain bases with probability 0.5. Notably, counting Graham-Sloane matroids has provided the best known lower bound on the total number of matroids, to log-log level. Despite the vast size of the class we are able to prove severe restrictions on what minors of Graham-Sloane matroids can look like.  Finally we consider transversal matroids, which arise naturally in the context of other mathematical objects - in particular partial transversals of set systems and partial matchings in bipartite graphs. Although transversal matroids are not in one-to-one correspondence with bipartite graphs, we shall link the two closely enough to gain some useful results through exploiting the properties of random bipartite graphs. Returning to the theme of matroid minors, we prove that the class of transversal matroids of given rank is defined by finitely many excluded series-minors. Lastly we consider some other topics, including the axiomatisability of transversal matroids and related classes.</p>


2021 ◽  
Author(s):  
◽  
William Critchlow

<p>This thesis is inspired by the observation that we have no good random model for matroids. That stands in contrast to graphs, which admit a number of elegant random models. As a result we have relatively little understanding of the properties of a "typical" matroid. Acknowledging the difficulty of the general case, we attempt to gain a grasp on randomness in some chosen classes of matroids.  Firstly, we consider sparse paving matroids, which are conjectured to dominate the class of matroids (that is to say, asymptotically almost all matroids would be sparse paving). If this conjecture were true, then many results on properties of the random sparse paving matroid would also hold for the random matroid. Sparse paving matroids have limited richness of structure, making counting arguments in particular more feasible than for general matroids. This enables us to prove a number of asymptotic results, particularly with regards to minors.  Secondly, we look at Graham-Sloane matroids, a special subset of sparse paving matroids with even more limited structure - in fact Graham-Sloane matroids on a labelled groundset can be randomly generated by a process as simple as independently including certain bases with probability 0.5. Notably, counting Graham-Sloane matroids has provided the best known lower bound on the total number of matroids, to log-log level. Despite the vast size of the class we are able to prove severe restrictions on what minors of Graham-Sloane matroids can look like.  Finally we consider transversal matroids, which arise naturally in the context of other mathematical objects - in particular partial transversals of set systems and partial matchings in bipartite graphs. Although transversal matroids are not in one-to-one correspondence with bipartite graphs, we shall link the two closely enough to gain some useful results through exploiting the properties of random bipartite graphs. Returning to the theme of matroid minors, we prove that the class of transversal matroids of given rank is defined by finitely many excluded series-minors. Lastly we consider some other topics, including the axiomatisability of transversal matroids and related classes.</p>


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Domenico Cantone ◽  
Jean-Paul Doignon ◽  
Alfio Giarlotta ◽  
Stephen Watson

Convex geometries (Edelman and Jamison, 1985) are finite combinatorial structures dual to union-closed antimatroids or learning spaces.  We define an operation of resolution for convex geometries, which replaces each element of a base convex geometry by a fiber convex geometry.  Contrary to what happens for similar constructions–compounds of hypergraphs, as in Chein, Habib and Maurer (1981), and compositions of set systems, as in Möhring and Radermacher)–, resolutions of convex geometries always yield a convex geometry.   We investigate resolutions of special convex geometries: ordinal and affine.  A resolution of ordinal convex geometries is again ordinal, but a resolution of affine convex geometries may fail to be affine.  A notion of primitivity, which generalize the corresponding notion for posets, arises from resolutions: a convex geometry is primitive if it is not a resolution of smaller ones.  We obtain a characterization of affine convex geometries that are primitive, and compute the number of primitive convex geometries on at most four elements.  Several open problems are listed. 


2021 ◽  
Vol 2058 (1) ◽  
pp. 012030
Author(s):  
R M Berestov ◽  
E A Bobkov ◽  
V S Belov ◽  
A V Nevedin

Abstract At the moment, neurocomputer interfaces (BCI) make it possible to implement on their basis devices for diagnosing a physical condition, implementing control systems for bionic prostheses, information input means such as neuro chat and character set systems based on brain potentials. At the moment, the main technology for obtaining brain activity for neurointerfaces is the electroencephalogram (EEG). There are promising technologies that will make it possible to achieve new results in the field of neurointerfaces. These technologies are functional near infrared spectroscopy (fNIRS) and magnetoencephalography (MEG).


Sign in / Sign up

Export Citation Format

Share Document