scholarly journals Cyclotomic expansion of generalized Jones polynomials

2021 ◽  
Vol 111 (2) ◽  
Author(s):  
Yuri Berest ◽  
Joseph Gallagher ◽  
Peter Samuelson
Keyword(s):  
1991 ◽  
Vol 109 (1) ◽  
pp. 83-103 ◽  
Author(s):  
H. R. Morton ◽  
P. Strickland

AbstractResults of Kirillov and Reshetikhin on constructing invariants of framed links from the quantum group SU(2)q are adapted to give a simple formula relating the invariants for a satellite link to those of the companion and pattern links used in its construction. The special case of parallel links is treated first. It is shown as a consequence that any SU(2)q-invariant of a link L is a linear combination of Jones polynomials of parallels of L, where the combination is determined explicitly from the representation ring of SU(2). As a simple illustration Yamada's relation between the Jones polynomial of the 2-parallel of L and an evaluation of Kauffman's polynomial for sublinks of L is deduced.


2008 ◽  
Vol 17 (08) ◽  
pp. 925-937
Author(s):  
TOSHIFUMI TANAKA

We give formulas for the N-colored Jones polynomials of doubles of knots by using skein theory. As a corollary, we show that if the volume conjecture for untwisted positive (or negative) doubles of knots is true, then the colored Jones polynomial detects the unknot.


1988 ◽  
Vol 131 (2) ◽  
pp. 319-329 ◽  
Author(s):  
Kunio Murasugi
Keyword(s):  

2010 ◽  
Vol 19 (12) ◽  
pp. 1571-1595 ◽  
Author(s):  
STAVROS GAROUFALIDIS ◽  
XINYU SUN

The purpose of the paper is two-fold: to introduce a multivariable creative telescoping method, and to apply it in a problem of Quantum Topology: namely the computation of the non-commutative A-polynomial of twist knots. Our multivariable creative telescoping method allows us to compute linear recursions for sums of the form [Formula: see text] given a recursion relation for [Formula: see text] and the hypergeometric kernel c(n, k). As an application of our method, we explicitly compute the non-commutative A-polynomial for twist knots with -15 and 15 crossings. The non-commutative A-polynomial of a knot encodes the monic, linear, minimal order q-difference equation satisfied by the sequence of colored Jones polynomials of the knot. Its specialization to q = 1 is conjectured to be the better-known A-polynomial of a knot, which encodes important information about the geometry and topology of the knot complement. Unlike the case of the Jones polynomial, which is easily computable for knots with 50 crossings, the A-polynomial is harder to compute and already unknown for some knots with 12 crossings.


2009 ◽  
Vol 18 (04) ◽  
pp. 531-545 ◽  
Author(s):  
EIJI OGASA

As analogues of the well-known skein relations for the Alexander and the Jones polynomials for classical links, we present three relations that hold among invariants of high dimensional knots differing by "local moves". Two are for the Alexander polynomials and the other is for the Arf-invariants, the inertia group and the bP-subgroup.


2010 ◽  
Vol 19 (08) ◽  
pp. 1001-1023 ◽  
Author(s):  
XIAN'AN JIN ◽  
FUJI ZHANG

It is well known that Jones polynomial (hence, Kauffman bracket polynomial) of links is, in general, hard to compute. By now, Jones polynomials or Kauffman bracket polynomials of many link families have been computed, see [4, 7–11]. In recent years, the computer algebra (Maple) techniques were used to calculate link polynomials for various link families, see [7, 12–14]. In this paper, we try to design a maple program to calculate the explicit expression of the Kauffman bracket polynomial of Montesinos links. We first introduce a family of "ring of tangles" links, which includes Montesinos links as a special subfamily. Then, we provide a closed-form formula of Kauffman bracket polynomial for a "ring of tangles" link in terms of Kauffman bracket polynomials of the numerators and denominators of the tangles building the link. Finally, using this formula and known results on rational links, the Maple program is designed.


2001 ◽  
Vol 186 (1) ◽  
pp. 85-104 ◽  
Author(s):  
Hitoshi Murakami ◽  
Jun Murakami

1995 ◽  
Vol 117 (1) ◽  
pp. 129-135 ◽  
Author(s):  
H. R. Morton

AbstractIn [2] it was conjectured that the coloured Jones function of a framed knot K, or equivalently the Jones polynomials of all parallels of K, is sufficient to determine the Alexander polynomial of K. An explicit formula was proposed in terms of the power series expansion , where JK, k(h) is the SU(2)q quantum invariant of K when coloured by the irreducible module of dimension k, and q = eh is the quantum group parameter.In this paper I show that the explicit formula does give the Alexander polynomial when K is any torus knot.


Sign in / Sign up

Export Citation Format

Share Document