scholarly journals Some aspects of quantum sufficiency for finite and full von Neumann algebras

2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Andrzej Łuczak

AbstractSome features of the notion of sufficiency in quantum statistics are investigated. Three kinds of this notion are considered: plain sufficiency (called simply: sufficiency), strong sufficiency and Umegaki’s sufficiency. It is shown that for a finite von Neumann algebra with a faithful family of normal states the minimal sufficient von Neumann subalgebra is sufficient in Umegaki’s sense. Moreover, a proper version of the factorization theorem of Jenčová and Petz is obtained. The structure of the minimal sufficient subalgebra is described in the case of pure states on the full algebra of all bounded linear operators on a Hilbert space.

2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


Author(s):  
Panchugopal Bikram ◽  
Rahul Kumar ◽  
Rajeeb Mohanta ◽  
Kunal Mukherjee ◽  
Diptesh Saha

Bożejko and Speicher associated a finite von Neumann algebra M T to a self-adjoint operator T on a complex Hilbert space of the form $\mathcal {H}\otimes \mathcal {H}$ which satisfies the Yang–Baxter relation and $ \left\| T \right\| < 1$ . We show that if dim $(\mathcal {H})$ ⩾ 2, then M T is a factor when T admits an eigenvector of some special form.


2002 ◽  
Vol 65 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Cui Jianlian ◽  
Hou Jinchuan

In this paper, we give some characterisations of homomorphisms on von Neumann algebras by linear preservers. We prove that a bounded linear surjective map from a von Neumann algebra onto another is zero-product preserving if and only if it is a homomorphism multiplied by an invertible element in the centre of the image algebra. By introducing the notion of tr-rank of the elements in finite von Neumann algebras, we show that a unital linear map from a linear subspace ℳ of a finite von Neumann algebra ℛ into ℛ can be extended to an algebraic homomorphism from the subalgebra generated by ℳ into ℛ; and a unital self-adjoint linear map from a finite von Neumann algebra onto itself is completely tr-rank preserving if and only if it is a spatial *-automorphism.


2008 ◽  
Vol 19 (04) ◽  
pp. 481-501 ◽  
Author(s):  
TETSUO HARADA ◽  
HIDEKI KOSAKI

Let τ be a faithful semi-finite normal trace on a semi-finite von Neumann algebra, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality states τ(f(a* xa)) ≤ τ(a* f(x)a) for a contraction a and a self-adjoint operator x. Under certain strict convexity assumption on f(t), we will study when this inequality reduces to the equality.


1971 ◽  
Vol 23 (5) ◽  
pp. 849-856 ◽  
Author(s):  
P. K. Tam

The following (so-called unitary equivalence) problem is of paramount importance in the theory of operators: given two (bounded linear) operators A1, A2 on a (complex) Hilbert space , determine whether or not they are unitarily equivalent, i.e., whether or not there is a unitary operator U on such that U*A1U = A2. For normal operators this question is completely answered by the classical multiplicity theory [7; 11]. Many authors, in particular, Brown [3], Pearcy [9], Deckard [5], Radjavi [10], and Arveson [1; 2], considered the problem for non-normal operators and have obtained various significant results. However, most of their results (cf. [13]) deal only with operators which are of type I in the following sense [12]: an operator, A, is of type I (respectively, II1, II∞, III) if the von Neumann algebra generated by A is of type I (respectively, II1, II∞, III).


Author(s):  
Martijn Caspers

AbstractConsider the free orthogonal quantum groups $$O_N^+(F)$$ O N + ( F ) and free unitary quantum groups $$U_N^+(F)$$ U N + ( F ) with $$N \ge 3$$ N ≥ 3 . In the case $$F = \text {id}_N$$ F = id N it was proved both by Isono and Fima-Vergnioux that the associated finite von Neumann algebra $$L_\infty (O_N^+)$$ L ∞ ( O N + ) is strongly solid. Moreover, Isono obtains strong solidity also for $$L_\infty (U_N^+)$$ L ∞ ( U N + ) . In this paper we prove for general $$F \in GL_N(\mathbb {C})$$ F ∈ G L N ( C ) that the von Neumann algebras $$L_\infty (O_N^+(F))$$ L ∞ ( O N + ( F ) ) and $$L_\infty (U_N^+(F))$$ L ∞ ( U N + ( F ) ) are strongly solid. A crucial part in our proof is the study of coarse properties of gradient bimodules associated with Dirichlet forms on these algebras and constructions of derivations due to Cipriani–Sauvageot.


1994 ◽  
Vol 05 (03) ◽  
pp. 329-348
Author(s):  
JEAN MARION

Let M be a compact smooth manifold, let [Formula: see text] be a unital involutive subalgebra of the von Neumann algebra £ (H) of bounded linear operators of some Hilbert space H, let [Formula: see text] be the unital involutive algebra [Formula: see text], let [Formula: see text] be an hermitian projective right [Formula: see text]-module of finite type, and let [Formula: see text] be the gauge group of unitary elements of the unital involutive algebra [Formula: see text] of right [Formula: see text]-linear endomorphisms of [Formula: see text]. We first prove that noncommutative geometry provides the suitable setting upon which a consistent theory of energy representations [Formula: see text] can be built. Three series of energy representations are constructed. The first consists of energy representations of the gauge group [Formula: see text], [Formula: see text] being the group of unitary elements of [Formula: see text], associated with integrable Riemannian structures of M, and the second series consists of energy representations associated with (d, ∞)-summable K-cycles over [Formula: see text]. In the case where [Formula: see text] is a von Neumann algebra of type II 1 a third series is given: we introduce the notion of regular quasi K-cycle, we prove that regular quasi K-cycles over [Formula: see text] always exist, and that each of them induces an energy representation.


2007 ◽  
Vol 14 (04) ◽  
pp. 445-458 ◽  
Author(s):  
Hanna Podsędkowska

The paper investigates correlations in a general theory of quantum measurement based on the notion of instrument. The analysis is performed in the algebraic formalism of quantum theory in which the observables of a physical system are described by a von Neumann algebra, and the states — by normal positive normalized functionals on this algebra. The results extend and generalise those obtained for the classical case where one deals with the full algebra of operators on a Hilbert space.


2013 ◽  
Vol 56 (1) ◽  
pp. 9-12 ◽  
Author(s):  
SHAVKAT AYUPOV ◽  
FARKHAD ARZIKULOV

AbstractIn the present paper we prove that every 2-local derivation on a semi-finite von Neumann algebra is a derivation.


1981 ◽  
Vol 1 (4) ◽  
pp. 419-429 ◽  
Author(s):  
O. Besson

AbstractLet α be an automorphism of a finite von Neumann algebra and let H(α) be its Connes-Størmer's entropy. We show that H(α) = 0 if α is the induced automorphism on the crossed product of a Lebesgue space by a pure point spectrum transformation. We also show that H is not continuous in α and we compute H(α) for some α.


Sign in / Sign up

Export Citation Format

Share Document