quantum measurement
Recently Published Documents


TOTAL DOCUMENTS

824
(FIVE YEARS 143)

H-INDEX

51
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Jonathan Schonfeld

Abstract Using publicly available video of a diffusion cloud chamber with a very smallradioactive source, I measure the spatial distribution of where tracks start, and consider possibleimplications. This is directly relevant to the quantum measurement problem and its possibleresolution, and appears never to have been done before. The raw data are relatively uncontrolled,leading to caveats that should guide future, more tailored experiments. Results may suggest amodification to Born’s rule at very small wavefunction, with possibly profound implications forthe detection of extremely rare events such as proton decay. I introduce two candidate smallwavefunctionBorn rule modifications, a hard cutoff and an offset model; the data may favor theoffset model, which has a stronger underlying physical rationale. Track distributions from decaysin cloud chambers represent a previously unappreciated way to probe the foundations of quantummechanics, and a novel case of wavefunctions with macroscopic signatures.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 106
Author(s):  
Abraham G. Kofman ◽  
Gershon Kurizki

The consensus regarding quantum measurements rests on two statements: (i) von Neumann’s standard quantum measurement theory leaves undetermined the basis in which observables are measured, and (ii) the environmental decoherence of the measuring device (the “meter”) unambiguously determines the measuring (“pointer”) basis. The latter statement means that the environment monitors (measures) selected observables of the meter and (indirectly) of the system. Equivalently, a measured quantum state must end up in one of the “pointer states” that persist in the presence of the environment. We find that, unless we restrict ourselves to projective measurements, decoherence does not necessarily determine the pointer basis of the meter. Namely, generalized measurements commonly allow the observer to choose from a multitude of alternative pointer bases that provide the same information on the observables, regardless of decoherence. By contrast, the measured observable does not depend on the pointer basis, whether in the presence or in the absence of decoherence. These results grant further support to our notion of Quantum Lamarckism, whereby the observer’s choices play an indispensable role in quantum mechanics.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Diego H. Useche ◽  
Andres Giraldo-Carvajal ◽  
Hernan M. Zuluaga-Bucheli ◽  
Jose A. Jaramillo-Villegas ◽  
Fabio A. González
Keyword(s):  

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Jay Lawrence
Keyword(s):  

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Zhiyuan Lin ◽  
Shanhe Su ◽  
Jingyi Chen ◽  
Jincan Chen ◽  
Jonas F. G. Santos

Quanta ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 65-74
Author(s):  
Mani L. Bhaumik

A satisfactory resolution of the persistent quantum measurement problem remains stubbornly unresolved in spite of an overabundance of efforts of many prominent scientists over the decades. Among others, one key element is considered yet to be resolved. It comprises of where the probabilities of the measurement outcome stem from. This article attempts to provide a plausible answer to this enigma, thus eventually making progress toward a cogent solution of the longstanding measurement problem.Quanta 2021; 10: 65–74.


2021 ◽  
Vol 1 (1-2) ◽  
Author(s):  
Moritz C. Dechamps ◽  
Markus A. Maier ◽  
Markus Pflitsch ◽  
Michael Duggan

Quantum mechanics (QM) proposes that a quantum system measurement does not register a pre-existing reality but rather establishes reality from the superposition of potential states. Measurement reduces the quantum state according to a probability function, the Born rule, realizing one of the potential states. Consequently, a classical reality is observed. The strict randomness of the measurement outcome is well-documented (and theoretically predicted) and implies a strict indeterminacy in the physical world’s fundamental constituents. Wolfgang Pauli, with Carl Gustav Jung, extended the QM framework to measurement outcomes that are meaningfully related to human observers, providing a psychophysical theory of quantum state reductions. The Pauli-Jung model (PJM) proposes the existence of observer influences on quantum measurement outcomes rooted in the observer’s unconscious mind. The correlations between quantum state reductions and (un)conscious states of observers derived from the PJM and its mathematical reformulation within the model of pragmatic information (MPI) were empirically tested. In all studies, a subliminal priming paradigm was used to induce a biased likelihood for specific quantum measurement outcomes (i.e., a higher probability of positive picture presentations; Studies 1 and 2) or more pronounced oscillations of the evidence than expected by chance for such an effect (Studies 3 and 4). The replicability of these effects was also tested. Although Study 1 found strong initial evidence for such effects, later replications (Studies 2 to 4) showed no deviations from the Born rule. The results thus align with standard QM, arguing against the incompleteness of standard QM in psychophysical settings like those established in the studies. However, although no positive evidence exists for the PJM and the MPI, the data do not entirely falsify the model’s validity.


2021 ◽  
Author(s):  
Jonathan Schonfeld

Abstract Using publically available video of a cloud chamber with a very small radioactive source, I measure the spatial distribution of where tracks start, and consider possible implications. This is directly relevant to the quantum measurement problem and its possible resolution, and appears never to have been done before. The raw data are relatively uncontrolled, leading to caveats that should guide future, more tailored experiments. Track distributions from decays in cloud chambers represent a previously unappreciated way to probe the foundations of quantum mechanics, and a novel case of wavefunctions with macroscopic signatures.


2021 ◽  
Author(s):  
Mario Mastriani

Abstract Entanglement is a random phenomenon that is instantly synchronized, regardless of the space that mediates between entangled particles. However, the instantaneous transmission of information using entanglement is impossible. This is because the instantaneity in the synchronization of non-local outcomes as a consequence of quantum measurement (after the distribution of the entangled pairs) cannot be used for an entanglement-based communication system to transmit information instantaneously. This impossibility stems from the following two reasons: a) the difficulty of controlling non-local outcomes through local actions without the intervention of an auxiliary channel (classical), and b) regardless of the previous point, no communication system based on entanglement can be instantaneous due to the distribution of an entangled pair at relativistic speeds, necessary to generate the quantum channel, each time a qubit must be transmitted. Three simple experiments help to clarify this controversial point. In fact, this study establishes what is truly responsible for the impossibility to transmit information instantaneously of any communication system based on entanglement. In this respect, functional models of the internal behavior of quantum measurement, and entanglement were developed, which allow analyzing the instantaneity post-distribution of entangled particles, before and after a quantum measurement, as well as the randomness in the results obtained from a quantum measurement of the entanglement. In this sense, this study establishes a debate about three possible responsible for the aforementioned randomness: the quantum measurement itself, entanglement, and the human intervention. Finally, homology between the entanglement and the double-slit experiment is presented.


Sign in / Sign up

Export Citation Format

Share Document