Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences

Author(s):  
Luis Rincón ◽  
David J. Santana
Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 982
Author(s):  
Yujuan Huang ◽  
Jing Li ◽  
Hengyu Liu ◽  
Wenguang Yu

This paper considers the estimation of ruin probability in an insurance risk model with stochastic premium income. We first show that the ruin probability can be approximated by the complex Fourier series (CFS) expansion method. Then, we construct a nonparametric estimator of the ruin probability and analyze its convergence. Numerical examples are also provided to show the efficiency of our method when the sample size is finite.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1350
Author(s):  
Galina Horáková ◽  
František Slaninka ◽  
Zsolt Simonka

The aim of the paper is to propose, and give an example of, a strategy for managing insurance risk in continuous time to protect a portfolio of non-life insurance contracts against unwelcome surplus fluctuations. The strategy combines the characteristics of the ruin probability and the values VaR and CVaR. It also proposes an approach for reducing the required initial reserves by means of capital injections when the surplus is tending towards negative values, which, if used, would protect a portfolio of insurance contracts against unwelcome fluctuations of that surplus. The proposed approach enables the insurer to analyse the surplus by developing a number of scenarios for the progress of the surplus for a given reinsurance protection over a particular time period. It allows one to observe the differences in the reduction of risk obtained with different types of reinsurance chains. In addition, one can compare the differences with the results obtained, using optimally chosen parameters for each type of proportional reinsurance making up the reinsurance chain.


1996 ◽  
Vol 33 (01) ◽  
pp. 57-70
Author(s):  
Bartłomiej Błaszczyszyn ◽  
Tomasz Rolski

Let N be a stationary Markov-modulated marked point process on ℝ with intensity β ∗ and consider a real-valued functional ψ(N). In this paper we study expansions of the form Eψ(N) = a 0 + β ∗ a 1 + ·· ·+ (β∗ ) nan + o((β ∗) n ) for β ∗→ 0. Formulas for the coefficients ai are derived in terms of factorial moment measures of N. We compute a 1 and a 2 for the probability of ruin φ u with initial capital u for the risk process in the Markov-modulated environment; a 0 = 0. Moreover, we give a sufficient condition for ϕu to be an analytic function of β ∗. We allow the premium rate function p(x) to depend on the actual risk reserve.


2002 ◽  
Vol 93 (2) ◽  
pp. 87-107 ◽  
Author(s):  
George Grossman ◽  
Florian Luca
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document