Method for Measuring Distortions in Speech Signals during Transmission over a Communication Channel to a Biometric Identification System

2021 ◽  
Vol 63 (11) ◽  
pp. 917-925 ◽  
Author(s):  
V. V. Savchenko ◽  
A. V. Savchenko
2020 ◽  
pp. 65-72
Author(s):  
V. V. Savchenko ◽  
A. V. Savchenko

This paper is devoted to the presence of distortions in a speech signal transmitted over a communication channel to a biometric system during voice-based remote identification. We propose to preliminary correct the frequency spectrum of the received signal based on the pre-distortion principle. Taking into account a priori uncertainty, a new information indicator of speech signal distortions and a method for measuring it in conditions of small samples of observations are proposed. An example of fast practical implementation of the method based on a parametric spectral analysis algorithm is considered. Experimental results of our approach are provided for three different versions of communication channel. It is shown that the usage of the proposed method makes it possible to transform the initially distorted speech signal into compliance on the registered voice template by using acceptable information discrimination criterion. It is demonstrated that our approach may be used in existing biometric systems and technologies of speaker identification.


2008 ◽  
pp. 83-97
Author(s):  
Georg Rock ◽  
Gunter Lassmann ◽  
Mathias Schwan ◽  
Lassaad Cheikhrouhou

Author(s):  
Tripti Rani Borah ◽  
Kandarpa Kumar Sarma ◽  
Pranhari Talukdar

In all authentication systems, biometric samples are regarded to be the most reliable one. Biometric samples like fingerprint, retina etc. is unique. Most commonly available biometric system prefers these samples as reliable inputs. In a biometric authentication system, the design of decision support system is critical and it determines success or failure. Here, we propose such a system based on neuro and fuzzy system. Neuro systems formulated using Artificial Neural Network learn from numeric data while fuzzy based approaches can track finite variations in the environment. Thus NFS systems formed using ANN and fuzzy system demonstrate adaptive, numeric and qualitative processing based learning. These attributes have motivated the formulation of an adaptive neuro fuzzy inference system which is used as a DSS of a biometric authenticable system. The experimental results show that the system is reliable and can be considered to be a part of an actual design.


2019 ◽  
Vol 23 (2) ◽  
pp. 1299-1317 ◽  
Author(s):  
Sidra Aleem ◽  
Po Yang ◽  
Saleha Masood ◽  
Ping Li ◽  
Bin Sheng

Sign in / Sign up

Export Citation Format

Share Document