Buckling Analysis of Laminated Composite Plates by Using Various Higher-Order Shear Deformation Theories

2015 ◽  
Vol 51 (5) ◽  
pp. 645-654 ◽  
Author(s):  
S. Xiang ◽  
J. Wang ◽  
Y. T. Ai ◽  
G.-Ch. Li
2012 ◽  
Vol 226-228 ◽  
pp. 1725-1729 ◽  
Author(s):  
Xiang Jun Lan ◽  
Zhi Hua Feng

Based on the new simple third-order shear deformation theory, the deflections and stresses of the simply surported symmetrical laminated composite plates are obtained by using the principle of virtual work .The solutions are compared with the solutions of three-dimensional elasticity theory, the first-order shear deformation theory and the Reddy’s higher order shear deformation theory . Results show that the presented new theory is more reliable, accurate, and cost-effective in computation than the first-order shear deformation theories and other simple higher-order shear deformation theories.


Author(s):  
Aniket Chanda ◽  
Utkarsh Chandel ◽  
Rosalin Sahoo ◽  
Neeraj Grover

In the present study, the electro-mechanical responses of smart laminated composite plates with piezoelectric materials are derived using a two-dimensional (2 D) displacement-based non-polynomial higher-order shear deformation theory. The kinematics of the mathematical model incorporates the deformation of laminates which account for the effects of transverse shear deformation and a non-linear variation of the in-plane displacements using inverse sine hyperbolic function of the thickness coordinate. The equilibrium equations are obtained using the minimization of energy principle known as the principle of minimum potential energy (PMPE) which is also based on a variational approach and the solutions are obtained using Navier’s solution technique for diaphragm supported smart laminated composite plates. The responses obtained in the form of deflection and stresses are compared with three dimensional (3 D) solutions and also with different polynomial and non-polynomial based higher-order theories in the literature. The transverse shear stresses are obtained using 3 D equilibrium equations of elasticity to enhance the accuracy of the present results. Various examples are numerically solved to establish the efficiency of the present model.


1984 ◽  
Vol 51 (4) ◽  
pp. 745-752 ◽  
Author(s):  
J. N. Reddy

A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano [6], but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.


Sign in / Sign up

Export Citation Format

Share Document