mechanical loading
Recently Published Documents


TOTAL DOCUMENTS

2222
(FIVE YEARS 472)

H-INDEX

85
(FIVE YEARS 11)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Salman Khalid ◽  
Jaehun Lee ◽  
Heung Soo Kim

This paper introduces a new loading condition considering the combined thermo-electro-mechanical coupling effect in a series solution-based approach to analyze the free-edge interlaminar stresses in smart composite laminates. The governing equations are developed using the principle of complementary virtual work. The assumed stress fields satisfy the traction-free and free-edge boundary conditions. The accurate stress states of the composite structures are acquired through the procedure of generalized eigenvalue problems. The uniform temperature is employed throughout the laminate, and the electric field loading is applied to the symmetric piezo-bonded actuators to examine the combined effect of thermal and electrical stresses on the overall deformation of smart composite laminates. It was observed that the magnitude of the peeling stresses generated by mechanical loading was reduced by the combined thermal and electric excitation loading (up to 25.3%), which in turn resulted in expanding the service life of the smart composite structures. The proposed approach is implemented on three different layup configurations. The efficiency of the current methodology is confirmed by comparing the results with the 3D finite element (FEM) solution computed by ABAQUS.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jaeyeon Wee ◽  
Hyang Kim ◽  
Sang-Jin Shin ◽  
Taeyong Lee ◽  
Seung Yeol Lee

Abstract Background Organogenesis from tonsil-derived mesenchymal cells (TMSCs) has been reported, wherein tenogenic markers are expressed depending on the chemical stimulation during tenogenesis. However, there are insufficient studies on the mechanical strain stimulation for tenogenic cell differentiation of TMSCs, although these cells possess advantages as a cell source for generating tendinous tissue. The purpose of this study was to investigate the effects of mechanical strain and transforming growth factor-beta 3 (TGF-β3) on the tenogenic differentiation of TMSCs and evaluate the expression of tendon-related genes and extracellular matrix (ECM) components, such as collagen. Results mRNA expression of tenogenic genes was significantly higher when the mechanical strain was applied than under static conditions. Moreover, mRNA expression of tenogenic genes was significantly higher with TGF-β3 treatment than without. mRNA expression of osteogenic and chondrogenic genes was not significantly different among different mechanical strain intensities. In cells without TGF-β3 treatment, double-stranded DNA concentration decreased, while the amount of normalized collagen increased as the intensity of mechanical strain increased. Conclusions Mechanical strain and TGF-β3 have significant effects on TMSC differentiation into tenocytes. Mechanical strain stimulates the differentiation of TMSCs, particularly into tenocytes, and cell differentiation, rather than proliferation. However, a combination of these two did not have a synergistic effect on differentiation. In other words, mechanical loading did not stimulate the differentiation of TMSCs with TGF-β3 supplementation. The effect of mechanical loading with TGF-β3 treatment on TMSC differentiation can be manipulated according to the differentiation stage of TMSCs. Moreover, TMSCs have the potential to be used for cell banking, and compared to other mesenchymal stem cells, they can be procured from patients via less invasive procedures.


2022 ◽  
Vol 12 ◽  
Author(s):  
Slobodan Sekulić ◽  
Branislava Jakovljević ◽  
Darinka Korovljev ◽  
Svetlana Simić ◽  
Ivan Čapo ◽  
...  

Polyhydramnios is a condition related to an excessive accumulation of amniotic fluid in the third trimester of pregnancy and it can be acute and chronic depending on the duration. Published data suggest that during muscle development, in the stage of late histochemical differentiation decreased mechanical loading cause decreased expression of myosin heavy chain (MHC) type 1 leading to slow-to-fast transition. In the case of chronic polyhydramnios, histochemical muscle differentiation could be affected as a consequence of permanent decreased physical loading. Most affected would be muscles which are the most active i.e., spine extensor muscles and muscles of legs. Long-lasting decreased mechanical loading on muscle should cause decreased expression of MHC type 1 leading to slow-to-fast transition, decreased number of muscle fiber type I especially in extensor muscles of spine and legs. Additionally, because MHC type 1 is present in all skeletal muscles it could lead to various degrees of hypotrophy depending on constituting a percentage of MHC type 1 in affected muscles. These changes in the case of preexisting muscle disorders have the potential to deteriorate the muscle condition additionally. Given these facts, idiopathic chronic polyhydramnios is a rare opportunity to study the influence of reduced physical loading on muscle development in the human fetus. Also, it could be a medical entity to examine the influence of micro- and hypogravity conditions on the development of the fetal muscular system during the last trimester of gestation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Suruchi Pacharne ◽  
Matthew Livesey ◽  
Mahita Kadmiel ◽  
Ning Wang ◽  
Kathleen M. Caron ◽  
...  

Knockout technologies provide insights into physiological roles of genes. Studies initiated into endocrinology of heteromeric G protein-coupled receptors included deletion of receptor activity modifying protein-3, an accessory protein that alters ligand selectivity of calcitonin and calcitonin-like receptors. Initially, deletion of Ramp3-/- appeared phenotypically silent, but it has emerged that mice have a high bone mass phenotype, and more subtle alterations to angiogenesis, amylin homeostasis, and a small proportion of the effects of adrenomedullin on cardiovascular and lymphatic systems. Here we explore in detail, effects of Ramp3-/- deletion on skeletal growth/development, bone mass and response of bone to mechanical loading mimicking exercise. Mouse pups lacking RAMP3 are healthy and viable, having accelerated development of the skeleton as assessed by degree of mineralisation of specific bones, and by microCT measurements. Specifically, we observed that neonates and young mice have increased bone volume and mineralisation in hindlimbs and vertebrae and increased thickness of bone trabeculae. These changes are associated with increased osteoblast numbers and bone apposition rate in Ramp3-/- mice, and increased cell proliferation in epiphyseal growth plates. Effects persist for some weeks after birth, but differences in gross bone mass between RAMP3 and WT mice lose significance in older animals although architectural differences persist. Responses of bones of 17-week old mice to mechanical loading that mimics effects of vigorous exercise is increased significantly in Ramp3-/- mice by 30% compared with WT control mice. Studies on cultured osteoblasts from Ramp3-/- mice indicate interactions between mRNA expression of RAMPs1 and 3, but not RAMP2 and 3. Our preliminary data shows that Ramp3-/- osteoblasts had increased expression β-catenin, a component of the canonical Wnt signalling pathway known to regulate skeletal homeostasis and mechanosensitivity. Given interactions of RAMPs with both calcitonin and calcitonin-like receptors to alter ligand selectivity, and with other GPCRs to change trafficking or ligand bias, it is not clear whether the bone phenotype of Ramp3-/- mice is due to alterations in signalling mediated by one or more GPCRS. However, as antagonists of RAMP-interacting receptors are growing in availability, there appears the likelihood that manipulation of the RAMP3 signalling system could provide anabolic effects therapeutically.


2022 ◽  
Vol 130 (3) ◽  
pp. 359
Author(s):  
В.Г. Квачадзе ◽  
М.Г. Абрамишвили ◽  
Г.Г. Абрамишвили ◽  
З.Г. Ахвледиани ◽  
М.В. Галусташвили ◽  
...  

The emission (700-1000 nm) and absorption (200-800 nm) spectra of LiF and LiF:OH crystals irradiated in a reactor and exposed to ultraviolet light, including those combined with mechanical loading, have been studied. The aim of this work is to study the behavior of laser color centers in these systems. In the 710–825 nm range, diametrically opposite results are observed: high stability of F4-like centers in “pure” LiF and their sharp destruction in LiF:OH crystals. At the same time, in both groups, F3 and F4 centers are destroyed and F2+ and F3- laser centers (825–925 nm) are intensely accumulated. Upon subsequent exposure at room temperature and darkness, spontaneous disintegration of laser centers is observed, accompanied by an increase of concentration of F4-like centers and restoration of the microstructure of irradiated crystals.


Sign in / Sign up

Export Citation Format

Share Document