Instability of Triangular Equilibrium Points in the Restricted Three-Body Problem Under Effects of Circumbinary Disc, Radiation Pressure and P–R Drag

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Tajudeen Oluwafemi Amuda ◽  
Jagadish Singh
2017 ◽  
Vol 2 (2) ◽  
pp. 529-542 ◽  
Author(s):  
Abdullah A. Ansari

AbstractThe present paper investigates the motion of the variable infinitesimal body in circular restricted four variable bodies problem. We have constructed the equations of motion of the infinitesimal variable mass under the effect of source of radiation pressure due to which albedo effects are produced by another two primaries and one primary is considered as an oblate body which is placed at the triangular equilibrium point of the classical restricted three-body problem and also the variation of Jacobi Integral constant has been determined. We have studied numerically the equilibrium points, Poincaré surface of sections and basins of attraction in five cases (i. Third primary is placed at one of the triangular equilibrium points of the classical restricted three-body problem, ii. Variation of masses, iii. Solar radiation pressure, iv. Albedo effect, v. Oblateness effect.) by using Mathematica software. Finally, we have examined the stability of the equilibrium points and found that all the equilibrium points are unstable.


2019 ◽  
Vol 488 (2) ◽  
pp. 1894-1907
Author(s):  
Saleem Yousuf ◽  
Ram Kishor

ABSTRACT The important aspects of a dynamical system are its stability and the factors that affect its stability. In this paper, we present an analysis of the effects of the albedo and the disc on the zero velocity curves, the existence of equilibrium points and their linear stability in a generalized restricted three-body problem (RTBP). The proposed problem consists of the motion of an infinitesimal mass under the gravitational field of a radiating-oblate primary, an oblate secondary and a disc that is rotating about the common centre of mass of the system. Significant effects of the albedo and the disc are observed on the zero velocity curves, on the positions of equilibrium points and on the stability region. A linear stability analysis of collinear equilibrium points L1, 2, 3 is performed with respect to the mass parameter μ and albedo parameter QA of the secondary, separately. It is found that L1, 2, 3 are unstable in both cases. However, the non-collinear equilibrium points L4, 5 are stable in a finite range of mass ratio μ. After analysing the individual as well as combined effects of the radiation pressure force of the primary, the albedo force of the secondary, the oblateness of both the primary and secondary and the disc, it is found that these perturbations play a significant role in the design of the trajectories in the vicinity of equilibrium points and in the analysis of their stability property. In the future, the results obtained will improve existing results and will help in the analysis of different space missions. These results are limited to the regular symmetric disc and radiation pressure, which can be extended later.


2016 ◽  
Vol 10 ◽  
pp. 23-36
Author(s):  
Jagadish Singh ◽  
Blessing Ashagwu ◽  
Aishetu Umar

We investigate in the framework of the elliptic restricted three-body problem (ER3BP), the influence of the zonal harmonics (J2and J4) of the primary and the radiation pressure of the secondary on the positions and stability of the triangular equilibrium points. The triangular points of the problem are affected by the parameters involved in the systems’ dynamics. The positions change with increase in the zonal harmonics, eccentricity and radiation pressure. The triangular points remain stable in the interval 0<μ<μcas shown arbitrarily.


2015 ◽  
Vol 3 (2) ◽  
pp. 97 ◽  
Author(s):  
Ashutosh Narayan ◽  
Krishna Kumar Pandey ◽  
Sandip Kumar Shrivastava

<p>This paper studies effects of the triaxiality and radiation pressure of both the primaries on the stability of the infinitesimal motion about triangular equilibrium points in the elliptical restricted three body problem(ER3BP), assuming that the bigger and the smaller primaries are triaxial and the source of radiation as well. It is observed that the motion around these points is stable under certain condition with respect to the radiation pressure and oblate triaxiality. The critical mass ratio depends on the radiation pressure, triaxiality, semi -major axis and eccentricity of the orbits. It is further analyzed that an increase in any of these parameters has destabilizing effects on the orbits of the infinitesimal.</p>


2017 ◽  
Vol 5 (2) ◽  
pp. 69
Author(s):  
Nishanth Pushparaj ◽  
Ram Krishan Sharma

Progression of f-type family of periodic orbits, their nature, stability and location nearer the smaller primary for different mass ratios in the framework of circular restricted three-body problem is studied using Poincaré surfaces of section. The orbits around the smaller primary are found to decrease in size with increase in Jacobian Constant C, and move very close towards the smaller primary. The orbit bifurcates into two orbits with the increase in C to 4.2. The two orbits that appear for this value of C belong to two adjacent separate families: one as direct orbit belonging to family g of periodic orbits and other one as retrograde orbit belonging to family f of periodic orbits. This bifurcation is interesting. These orbits increase in size with increase in mass ratio. The elliptic orbits found within the mass ratio 0 < µ ≤ 0.1 have eccentricity less than 0.2 and the orbits found above the mass ratio µ > 0.1 are elliptical orbits with eccentricity above 0.2. Deviations in the parameters: eccentricity, semi-major axis and time period of these orbits with solar radiation pressure q are computed in the frame work of photogravitational restricted Three-body problem in addition to the restricted three-body problem. These parameters are found to decrease with increase in the solar radiation pressure.


Sign in / Sign up

Export Citation Format

Share Document