Touch and hand gesture-based interactions for directly manipulating 3D virtual objects in mobile augmented reality

2016 ◽  
Vol 75 (23) ◽  
pp. 16529-16550 ◽  
Author(s):  
Minseok Kim ◽  
Jae Yeol Lee
2019 ◽  
Vol 9 (14) ◽  
pp. 2933 ◽  
Author(s):  
Ju Young Oh ◽  
Ji Hyung Park ◽  
Jung-Min Park

This paper proposes an interaction method to conveniently manipulate a virtual object by combining touch interaction and head movements for a head-mounted display (HMD), which provides mobile augmented reality (AR). A user can conveniently manipulate a virtual object with touch interaction recognized from the inertial measurement unit (IMU) attached to the index finger’s nail and head movements tracked by the IMU embedded in the HMD. We design two interactions that combine touch and head movements, to manipulate a virtual object on a mobile HMD. Each designed interaction method manipulates virtual objects by controlling ray casting and adjusting widgets. To evaluate the usability of the designed interaction methods, a user evaluation is performed in comparison with the hand interaction using Hololens. As a result, the designed interaction method receives positive feedback that virtual objects can be manipulated easily in a mobile AR environment.


2018 ◽  
Vol 8 (10) ◽  
pp. 1860 ◽  
Author(s):  
Joolekha Joolee ◽  
Md Uddin ◽  
Jawad Khan ◽  
Taeyeon Kim ◽  
Young-Koo Lee

Mobile Augmented Reality merges the virtual objects with real world on mobile devices, while video retrieval brings out the similar looking videos from the large-scale video dataset. Since mobile augmented reality application demands the real-time interaction and operation, we need to process and interact in real-time. Furthermore, augmented reality based virtual objects can be poorly textured. In order to resolve the above mentioned issues, in this research, we propose a novel, fast and robust approach for retrieving videos on the mobile augmented reality environment using an image and video queries. In the beginning, Top-K key-frames are extracted from the videos which significantly increases the efficiency. Secondly, we introduce a novel frame based feature extraction method, namely Pyramid Ternary Histogram of Oriented Gradient (PTHOG) to extract the shape feature from the virtual objects in an effective and efficient manner. Thirdly, we utilize the Double-Bit Quantization (DBQ) based hashing to accomplish the nearest neighbor search efficiently, which produce the candidate list of videos. Lastly, the similarity measure is performed to re-rank the videos which are obtained from the candidate list. An extensive experimental analysis is performed in order to verify our claims.


Sign in / Sign up

Export Citation Format

Share Document