Virtual Reality
Latest Publications


TOTAL DOCUMENTS

781
(FIVE YEARS 235)

H-INDEX

42
(FIVE YEARS 6)

Published By Springer-Verlag

1434-9957, 1359-4338

2022 ◽  
Author(s):  
Yannick Sauer ◽  
Alexandra Sipatchin ◽  
Siegfried Wahl ◽  
Miguel García García

AbstractVirtual reality as a research environment has seen a boost in its popularity during the last decades. Not only the usage fields for this technology have broadened, but also a research niche has appeared as the hardware improved and became more affordable. Experiments in vision research are constructed upon the basis of accurately displaying stimuli with a specific position and size. For classical screen setups, viewing distance and pixel position on the screen define the perceived position for subjects in a relatively precise fashion. However, projection fidelity in HMDs strongly depends on eye and face physiological parameters. This study introduces an inexpensive method to measure the perceived field of view and its dependence upon the eye position and the interpupillary distance, using a super wide angle camera. Measurements of multiple consumer VR headsets show that manufacturers’ claims regarding field of view of their HMDs are mostly unrealistic. Additionally, we performed a “Goldmann” perimetry test in VR to obtain subjective results as a validation of the objective camera measurements. Based on this novel data, the applicability of these devices to test humans’ field of view was evaluated.


2022 ◽  
Author(s):  
Soraia F. Paulo ◽  
Daniel Medeiros ◽  
Daniel Lopes ◽  
Joaquim Jorge

2022 ◽  
Author(s):  
Hyerim Park ◽  
Maryam Shakeri ◽  
Ikbeom Jeon ◽  
Jangyoon Kim ◽  
Abolghasem Sadeghi-Niaraki ◽  
...  

2022 ◽  
Author(s):  
Nirit Yuviler-Gavish ◽  
Eran Horesh ◽  
Elias Shamilov ◽  
Hagit Krisher ◽  
Levona Admoni

2021 ◽  
Author(s):  
Wolfgang Kogler ◽  
Guilherme Wood ◽  
Silvia Erika Kober

AbstractThe subjective presence experience in virtual reality (VR) is associated with distinct brain activation patterns. Particularly, the dorsolateral prefrontal cortex (DLPFC) seems to play a central role. We investigated the effects of electric brain stimulation (transcranial direct current, tDCS) on the presence experience as well as on brain activity and connectivity. Thirty-eight participants received either anodal (N = 18) or cathodal (N = 20) stimulation of the DLPFC before interacting in an immersive VR as well as sham stimulation. During VR interaction, EEG and heart rate were recorded. After VR interaction, participants rated their subjective presence experience using standardized questionnaires. Cathodal stimulation led to stronger brain connectivity than sham stimulation. Increased brain connectivity was associated with numerically lower levels of subjective presence. Anodal stimulation did not lead to changes in brain connectivity, and no differences in subjective presence ratings were found between the anodal and sham stimulation. These results indicate that cathodal tDCS over the DLPFC leads to a more synchronized brain state, which might hamper the activity in networks, which are generally associated with the evolvement of the subjective presence experience. Our results underline the importance of the DLPFC for the presence experience in VR.


2021 ◽  
Author(s):  
David Checa ◽  
Ines Miguel-Alonso ◽  
Andres Bustillo

AbstractImmersive virtual reality (VR) environments create a very strong sense of presence and immersion. Nowadays, especially when student isolation and online autonomous learning is required, such sensations can provide higher satisfaction and learning rates than conventional teaching. However, up until the present, learning outcomes with VR tools have yet to prove their advantageous aspects over conventional teaching. The project presents a VR serious game for teaching concepts associated with computer hardware assembly. These concepts are often included in any undergraduate’s introduction to Computer Science. The learning outcomes are evaluated using a pre-test of previous knowledge, a satisfaction/usability test, and a post-test on knowledge acquisition, structured with questions on different knowledge areas. The results of the VR serious game are compared with another two learning methodologies adapted to online learning: (1) an online conventional lecture; and (2) playing the same serious game on a desktop PC. An extensive sample of students (n = 77) was formed for this purpose. The results showed the strong potential of VR serious games to improve student well-being during spells of confinement, due to higher learning satisfaction. Besides, ease of usability and the use of in-game tutorials are directly related with game-user satisfaction and performance. The main novelty of this research is related to academic performance. Although a very limited effect was noted for learning theoretical knowledge with the VR application in comparison with the other methodologies, this effect was significantly improved through visual knowledge, understanding and making connections between different concepts. It can therefore be concluded that the proposed VR serious game has the potential to increase student learning and therefore student satisfaction, by imparting a deeper understanding of the subject matter to students.


2021 ◽  
Author(s):  
Sandro Ropelato ◽  
Marino Menozzi ◽  
Melody Ying-Yu Huang

AbstractWe present a new reorientation technique, “hyper-reoriented walking,” which greatly reduces the amount of physical space required in virtual reality (VR) applications asking participants to walk along a grid-like path (such as the most common layout in department stores). In hyper-reoriented walking, users walk along the gridlines with a virtual speed of twice the speed of real walking and perform turns at cross-points on the grid with half the speed of the rotation speed in the physical space. The impact of the technique on participants’ sense of orientation and increase in simulator sickness was investigated experimentally involving 19 participants walking in a labyrinth of infinite size that included straight corridors and 90° T-junctions at the end of the corridors. Walking accuracy was assessed by tracking the position of the head mounted display, and cyber-sickness was recorded with the simulator sickness questionnaire and with open questions. Walking straight forward was found to closely match the ideal path, which is the grid line, but slight errors occasionally occurred when participants turned at the T-junctions. A correction algorithm was therefore necessary to bring users back to the gridline. For VR experiments in a grid-like labyrinth with paths of 5 m in length, the technique reduces required size of the tracked physical walking area to 3 m × 2 m.


2021 ◽  
Author(s):  
Sangin Park ◽  
Laehyun Kim ◽  
Jangho Kwon ◽  
Soo Ji Choi ◽  
Mincheol Whang

AbstractBased on sensory conflict theory, motion sickness is strongly related to the information processing capacity or resources of the brain to cope with the multi-sensory stimuli experienced by watching virtual reality (VR) content. The purpose of this research was to develop a method of measuring motion sickness using the heart-evoked potential (HEP) phenomenon and propose new indicators for evaluating motion sickness. Twenty-eight undergraduate volunteers of both genders (14 females) participated in this study by watching VR content on both 2D and head-mounted devices (HMD) for 15 min. The responses of HEP measures such as alpha power, latency, and amplitude of first and second HEP components were compared using paired t-tests and ANCOVA. This study confirmed that motion sickness leads to a decline in cognitive processing, as demonstrated by increasing in alpha power of HEP. Also, the proposed indicators such as latency and amplitude of the HEP waveform showed significant differences during the experience of motion sickness and exhibited high correlations with alpha power measures. Latencies of the first HEP component, in particular, are recommended as better quantitative evaluators of motion sickness than other measures, following the multitrait-multimethod matrix. The proposed model for motion sickness was implemented in a support vector machine with a radial basis function kernel, and validated on twenty new participants. The accuracy, F1 score, precision, recall, and area under the curve (AUC) of the motion-sickness classification results were 0.875, 0.865, 0.941, 0.8, and 0.962, respectively.


Sign in / Sign up

Export Citation Format

Share Document