A robust image watermarking scheme in DCT domain based on adaptive texture direction quantization

2018 ◽  
Vol 78 (7) ◽  
pp. 8075-8089 ◽  
Author(s):  
Han Fang ◽  
Hang Zhou ◽  
Zehua Ma ◽  
Weiming Zhang ◽  
Nenghai Yu
Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1506 ◽  
Author(s):  
Kai Zhou ◽  
Yunming Zhang ◽  
Jing Li ◽  
Yantong Zhan ◽  
Wenbo Wan

In the robust image watermarking framework, watermarks are usually embedded in the direct current (DC) coefficients in discrete cosine transform (DCT) domain, since the DC coefficients have a larger perceptual capacity than any alternating current (AC) coefficients. However, DC coefficients are also excluded from watermark embedding with the consideration of avoiding block artifacts in watermarked images. Studies on human vision suggest that perceptual characteristics can achieve better image fidelity. With this perspective, we propose a novel spatial–perceptual embedding for a color image watermarking algorithm that includes the robust just-noticeable difference (JND) guidance. The logarithmic transform function is used for quantization embedding. Meanwhile, an adaptive quantization step is modeled by incorporating the partial AC coefficients. The novelty and effectiveness of the proposed framework are supported by JND perceptual guidance for spatial pixels. Experiments validate that the proposed watermarking algorithm produces a significantly better performance.


2020 ◽  
Vol 10 (21) ◽  
pp. 7494
Author(s):  
Weitong Chen ◽  
Na Ren ◽  
Changqing Zhu ◽  
Qifei Zhou ◽  
Tapio Seppänen ◽  
...  

The screen-cam process, which is taking pictures of the content displayed on a screen with mobile phones or cameras, is one of the main ways that image information is leaked. However, traditional image watermarking methods are not resilient to screen-cam processes with severe distortion. In this paper, a screen-cam robust watermarking scheme with a feature-based synchronization method is proposed. First, the distortions caused by the screen-cam process are investigated. These distortions can be summarized into the five categories of linear distortion, gamma tweaking, geometric distortion, noise attack, and low-pass filtering attack. Then, a local square feature region (LSFR) construction method based on a Gaussian function, modified Harris–Laplace detector, and speeded-up robust feature (SURF) orientation descriptor is developed for watermark synchronization. Next, the message is repeatedly embedded in each selected LSFR by an improved embedding algorithm, which employs a non-rotating embedding method and a preprocessing method, to modulate the discrete Fourier transform (DFT) coefficients. In the process of watermark detection, we fully utilize the captured information and extract the message based on a local statistical feature. Finally, the experimental results are presented to illustrate the effectiveness of the method against common attacks and screen-cam attacks. Compared to the previous schemes, our scheme has not only good robustness against screen-cam attack, but is also effective against screen-cam with additional common desynchronization attacks.


Sign in / Sign up

Export Citation Format

Share Document