color image watermarking
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 89)

H-INDEX

23
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Azza Dandooh ◽  
Adel S. El‐Fishawy ◽  
Fathi E. Abd El‐Samie ◽  
Ezz El‐Din Hemdan

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7845
Author(s):  
Mostafa M. Abdel-Aziz ◽  
Khalid M. Hosny ◽  
Nabil A. Lashin ◽  
Mostafa M. Fouda

This paper proposes a new blind, color image watermarking method using fast Walsh–Hadamard transformation (FWHT) and multi-channel fractional Legendre–Fourier moments (MFrLFMs). The input host color image is first split into 4 × 4 non-interfering blocks, and the MFrLFMs are computed for each block, where proper MFrLFMs coefficients are selected and FWHT is applied on the selected coefficients. The scrambled binary watermark has been inserted in the quantized selected MFrLFMs coefficients. The proposed method is a blind extraction, as the original host image is not required to extract the watermark. The proposed method is evaluated over many visual imperceptibility terms such as peak signal-to-noise ratio (PSNR), normalized correlation (NC), and bit error rate. The robustness of the proposed method is tested over several geometrical attacks such as scaling, rotation, cropping, and translation with different parameter values. The most widely recognized image processing attacks are also considered, e.g., compressing and adding noise attacks. A set of combination attacks are also tested to analyze the robustness of the proposed scheme versus several attacks. The proposed model’s experimental and numerical results for invisibility and robustness were superior to the results of similar watermarking methods.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dure Jabeen ◽  
S.M. Ghazanfar Monir ◽  
Shaheena Noor ◽  
Muhammad Rafiullah ◽  
Munsif Ali Jatoi

Purpose Watermarking technique is one of the significant methods in which carrier signal hides digital information in the form of watermark to prevent the authenticity of the stakeholders by manipulating different coefficients as watermark in time and frequency domain to sustain trade-off in performance parameters. One challenging component among others is to maintain the robustness, to limit perceptibility with embedding information. Transform domain is more popular to achieve the required results in color image watermarking. Variants of complex Hadamard transform (CHT) have been applied for gray image watermarking, and it has been proved that it has better performance than other orthogonal transforms. This paper is aimed at analyzing the performance of spatio-chromatic complex Hadamard transform (Sp-CHT) that is proposed as an application of color image watermarking in sequency domain (SD). Design/methodology/approach In this paper, color image watermarking technique is designed and implemented in SD using spatio-chromatic – conjugate symmetric sequency – ordered CHT. The color of a pixel is represented as complex number a*+jb*, where a* and b* are chromatic components of International Commission on Illumination (CIE) La*b* color space. The embedded watermark is almost transparent to human eye although robust against common signal processing attacks. Findings Based on the results, bit error rate (BER) and peak signal to noise ratio are measured and discussed in comparison of CIE La*b* and hue, saturation and value color model with spatio-chromatic discrete Fourier transform (Sp-DFT), and results are also analyzed with other discrete orthogonal transforms. It is observed from BER that Sp-CHT has 8%–12% better performance than Sp-DFT. Structural similarity index has been measured at different watermark strength and it is observed that presented transform performs better than other transforms. Originality/value This work presents the details and comparative analysis of two orthogonal transforms as color image watermarking application using MATLAB software. A finding from this study demonstrates that the Complex Hadamard transform is the competent candidate that can be replaced with DFT in many signal processing applications.


Sign in / Sign up

Export Citation Format

Share Document