scholarly journals Blind MV-based video steganalysis based on joint inter-frame and intra-frame statistics

Author(s):  
Negin Ghamsarian ◽  
Klaus Schoeffmann ◽  
Morteza Khademi

Abstract Despite all its irrefutable benefits, the development of steganography methods has sparked ever-increasing concerns over steganography abuse in recent decades. To prevent the inimical usage of steganography, steganalysis approaches have been introduced. Since motion vector manipulation leads to random and indirect changes in the statistics of videos, MV-based video steganography has been the center of attention in recent years. In this paper, we propose a 54-dimentional feature set exploiting spatio-temporal features of motion vectors to blindly detect MV-based stego videos. The idea behind the proposed features originates from two facts. First, there are strong dependencies among neighboring MVs due to utilizing rate-distortion optimization techniques and belonging to the same rigid object or static background. Accordingly, MV manipulation can leave important clues on the differences between each MV and the MVs belonging to the neighboring blocks. Second, a majority of MVs in original videos are locally optimal after decoding concerning the Lagrangian multiplier, notwithstanding the information loss during compression. Motion vector alteration during information embedding can affect these statistics that can be utilized for steganalysis. Experimental results have shown that our features’ performance far exceeds that of state-of-the-art steganalysis methods. This outstanding performance lies in the utilization of complementary spatio-temporal statistics affected by MV manipulation as well as feature dimensionality reduction applied to prevent overfitting. Moreover, unlike other existing MV-based steganalysis methods, our proposed features can be adjusted to various settings of the state-of-the-art video codec standards such as sub-pixel motion estimation and variable-block-size motion estimation.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Pengyu Liu ◽  
Yuan Gao ◽  
Kebin Jia

The unsymmetrical-cross multihexagon-grid search (UMHexagonS) is one of the best fast Motion Estimation (ME) algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV) distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2873
Author(s):  
Anusha Khan ◽  
Allah Bux Sargano ◽  
Zulfiqar Habib

Video super-resolution (VSR) aims at generating high-resolution (HR) video frames with plausible and temporally consistent details using their low-resolution (LR) counterparts, and neighboring frames. The key challenge for VSR lies in the effective exploitation of intra-frame spatial relation and temporal dependency between consecutive frames. Many existing techniques utilize spatial and temporal information separately and compensate motion via alignment. These methods cannot fully exploit the spatio-temporal information that significantly affects the quality of resultant HR videos. In this work, a novel deformable spatio-temporal convolutional residual network (DSTnet) is proposed to overcome the issues of separate motion estimation and compensation methods for VSR. The proposed framework consists of 3D convolutional residual blocks decomposed into spatial and temporal (2+1) D streams. This decomposition can simultaneously utilize input video’s spatial and temporal features without a separate motion estimation and compensation module. Furthermore, the deformable convolution layers have been used in the proposed model that enhances its motion-awareness capability. Our contribution is twofold; firstly, the proposed approach can overcome the challenges in modeling complex motions by efficiently using spatio-temporal information. Secondly, the proposed model has fewer parameters to learn than state-of-the-art methods, making it a computationally lean and efficient framework for VSR. Experiments are conducted on a benchmark Vid4 dataset to evaluate the efficacy of the proposed approach. The results demonstrate that the proposed approach achieves superior quantitative and qualitative performance compared to the state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document