fast motion estimation
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 25)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Behnaz Abdoli

Predictive fast Motion Estimation (ME) algorithms have been widely used in video CODECs due to their performance efficiency and low computational complexity. In this thesis, a new block-based fast motion estimation technique named Dynamic Predictive Search Algorithm (DPSA) is developed, which can be considered in predictive zonal search category. The proposed approach is based on the observation that temporally and spatially adjacent macro-blocks are not just statically correlated, but also dynamic alterations in their motion content are highly coherent. DPSA introduces a new set of six candidate predicted motion vectors. For early termination criteria, DPSA modifies termination procedure of already existing EPZS algorithm. Performance of this newly proposed algorithm has been compared to four other state-of-the-art algorithms implemented on JVT, H.264 standard software platform. Experimental results have proven that DPSA accomplishes up to 38% compression ratio enhancement achieved by a process with more 14.75% less computational complexity and up to0.47 dB higher PSNR values over the EPZS. It also manages to have up to 13% speed up over EPZS algorithm. Because of its simplicity and low computational complexity DPSA is energy efficient for portable video processing in computation- or power-constrained applications and easy to be implemented on both FPGA- and Microcontroller-based embedded systems. Also, higher compression ratio makes DPSA more compatible with limited capacity storage media, and limited band-width transmission networks.


2021 ◽  
Author(s):  
Behnaz Abdoli

Predictive fast Motion Estimation (ME) algorithms have been widely used in video CODECs due to their performance efficiency and low computational complexity. In this thesis, a new block-based fast motion estimation technique named Dynamic Predictive Search Algorithm (DPSA) is developed, which can be considered in predictive zonal search category. The proposed approach is based on the observation that temporally and spatially adjacent macro-blocks are not just statically correlated, but also dynamic alterations in their motion content are highly coherent. DPSA introduces a new set of six candidate predicted motion vectors. For early termination criteria, DPSA modifies termination procedure of already existing EPZS algorithm. Performance of this newly proposed algorithm has been compared to four other state-of-the-art algorithms implemented on JVT, H.264 standard software platform. Experimental results have proven that DPSA accomplishes up to 38% compression ratio enhancement achieved by a process with more 14.75% less computational complexity and up to0.47 dB higher PSNR values over the EPZS. It also manages to have up to 13% speed up over EPZS algorithm. Because of its simplicity and low computational complexity DPSA is energy efficient for portable video processing in computation- or power-constrained applications and easy to be implemented on both FPGA- and Microcontroller-based embedded systems. Also, higher compression ratio makes DPSA more compatible with limited capacity storage media, and limited band-width transmission networks.


2021 ◽  
Vol 11 (6) ◽  
pp. 2676
Author(s):  
Yubo Ni ◽  
Feng Liu ◽  
Yi Wu ◽  
Xiangjun Wang

This paper introduces a continuous-time fast motion estimation framework using high frame-rate cameras. To recover the high-speed motions trajectory, we inherent the bundle adjustment using a different frame-rate strategy. Based on the optimized trajectory, a cubic B-spline representation was proposed to parameter the continuous-time position, velocity and acceleration during this fast motion. We designed a high-speed visual system consisting of the high frame-rate cameras and infrared cameras, which can capture the fast scattered motion of explosion fragments and evaluate our method. The experiments show that bundle adjustment can greatly improve the accuracy and stability of the trajectory estimation, and the B-spline representation of the high frame-rate can estimate the velocity, acceleration, momentum and force of each fragments at any given time during its motion. The related estimated result can achieve under 1% error.


Sign in / Sign up

Export Citation Format

Share Document