Image quality assessment based fake face detection

Author(s):  
Kiruthika S. ◽  
Masilamani V.
2011 ◽  
Vol 4 (4) ◽  
pp. 107-108
Author(s):  
Deepa Maria Thomas ◽  
◽  
S. John Livingston

2020 ◽  
Vol 2020 (9) ◽  
pp. 323-1-323-8
Author(s):  
Litao Hu ◽  
Zhenhua Hu ◽  
Peter Bauer ◽  
Todd J. Harris ◽  
Jan P. Allebach

Image quality assessment has been a very active research area in the field of image processing, and there have been numerous methods proposed. However, most of the existing methods focus on digital images that only or mainly contain pictures or photos taken by digital cameras. Traditional approaches evaluate an input image as a whole and try to estimate a quality score for the image, in order to give viewers an idea of how “good” the image looks. In this paper, we mainly focus on the quality evaluation of contents of symbols like texts, bar-codes, QR-codes, lines, and hand-writings in target images. Estimating a quality score for this kind of information can be based on whether or not it is readable by a human, or recognizable by a decoder. Moreover, we mainly study the viewing quality of the scanned document of a printed image. For this purpose, we propose a novel image quality assessment algorithm that is able to determine the readability of a scanned document or regions in a scanned document. Experimental results on some testing images demonstrate the effectiveness of our method.


2020 ◽  
Vol 64 (1) ◽  
pp. 10505-1-10505-16
Author(s):  
Yin Zhang ◽  
Xuehan Bai ◽  
Junhua Yan ◽  
Yongqi Xiao ◽  
C. R. Chatwin ◽  
...  

Abstract A new blind image quality assessment method called No-Reference Image Quality Assessment Based on Multi-Order Gradients Statistics is proposed, which is aimed at solving the problem that the existing no-reference image quality assessment methods cannot determine the type of image distortion and that the quality evaluation has poor robustness for different types of distortion. In this article, an 18-dimensional image feature vector is constructed from gradient magnitude features, relative gradient orientation features, and relative gradient magnitude features over two scales and three orders on the basis of the relationship between multi-order gradient statistics and the type and degree of image distortion. The feature matrix and distortion types of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion type; the feature matrix and subjective scores of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion degree. A series of comparative experiments were carried out using Laboratory of Image and Video Engineering (LIVE), LIVE Multiply Distorted Image Quality, Tampere Image, and Optics Remote Sensing Image databases. Experimental results show that the proposed method has high distortion type judgment accuracy and that the quality score shows good subjective consistency and robustness for all types of distortion. The performance of the proposed method is not constricted to a particular database, and the proposed method has high operational efficiency.


2013 ◽  
Vol 32 (12) ◽  
pp. 3369-3372 ◽  
Author(s):  
Ya-zhou YANG ◽  
Xiao-qing YING ◽  
Guang-quan CHENG ◽  
Dan TU

2010 ◽  
Vol 2010 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Gang-yi Jiang ◽  
Da-jiang Huang ◽  
Xu Wang ◽  
Mei Yu

Author(s):  
Kholilatul Wardani ◽  
Aditya Kurniawan

 The ROI (Region of Interest) Image Quality Assessment is an image quality assessment model based on the SSI (Structural Similarity Index) index used in the specific image region desired to be assessed. Output assessmen value used by this image assessment model is 1 which means identical and -1 which means not identical. Assessment model of ROI Quality Assessment in this research is used to measure image quality on Kinect sensor capture result used in Mobile HD Robot after applied Multiple Localized Filtering Technique. The filter is applied to each capture sensor depth result on Kinect, with the aim to eliminate structural noise that occurs in the Kinect sensor. Assessment is done by comparing image quality before filter and after filter applied to certain region. The kinect sensor will be conditioned to capture a square black object measuring 10cm x 10cm perpendicular to a homogeneous background (white with RGB code 255,255,255). The results of kinect sensor data will be taken through EWRF 3022 by visual basic 6.0 program periodically 10 times each session with frequency 1 time per minute. The results of this trial show the same similar index (value 1: identical) in the luminance, contrast, and structural section of the edge region or edge region of the specimen. The value indicates that the Multiple Localized Filtering Technique applied to the noise generated by the Kinect sensor, based on the ROI Image Quality Assessment model has no effect on the image quality generated by the sensor.


Sign in / Sign up

Export Citation Format

Share Document