Novel Soft Computing Model for Predicting Blast-Induced Ground Vibration in Open-Pit Mines Based on Particle Swarm Optimization and XGBoost

2019 ◽  
Vol 29 (2) ◽  
pp. 711-721 ◽  
Author(s):  
Xiliang Zhang ◽  
Hoang Nguyen ◽  
Xuan-Nam Bui ◽  
Quang-Hieu Tran ◽  
Dinh-An Nguyen ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Asif Khan ◽  
Christian Niemann-Delius

Determining an optimum long term production schedule is an important part of the planning process of any open pit mine; however, the associated optimization problem is demanding and hard to deal with, as it involves large datasets and multiple hard and soft constraints which makes it a large combinatorial optimization problem. In this paper a procedure has been proposed to apply a relatively new and computationally less expensive metaheuristic technique known as particle swarm optimization (PSO) algorithm to this computationally challenging problem of the open pit mines. The performance of different variants of the PSO algorithm has been studied and the results are presented.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 184
Author(s):  
Rincy Merlin Mathew ◽  
S. Purushothaman ◽  
P. Rajeswari

This article presents the implementation of vegetation segmentation by using soft computing methods: particle swarm optimization (PSO), echostate neural network(ESNN) and genetic algorithm (GA). Multispectral image with the required band from Landsat 8 (5, 4, 3) and Landsat 7 (4, 3, 2) are used. In this paper, images from ERDAS format acquired by Landsat 7 ‘Paris.lan’ (band 4, band 3, Band 2) and image acquired from Landsat 8 (band5, band 4, band 3) are used. The soft computing algorithms are used to segment the plane-1(Near infra-red spectra) and plane 2(RED spectra). The monochrome of the two segmented images is compared to present performance comparisons of the implemented algorithms.


2016 ◽  
Vol 33 (2) ◽  
pp. 173-179 ◽  
Author(s):  
Mahdi Hasanipanah ◽  
Reyhaneh Naderi ◽  
Javad Kashir ◽  
Seyed Ahmad Noorani ◽  
Ali Zeynali Aaq Qaleh

The Travelling salesman problem also popularly known as the TSP, which is the most classical combinatorial optimization problem. It is the most diligently read and an NP hard problem in the field of optimization. When the less number of cities is present, TSP is solved very easily but as the number of cities increases it gets more and more harder to figure out. This is due to a large amount of computation time is required. So in order to solve such large sized problems which contain millions of cities to traverse, various soft computing techniques can be used. In this paper, we discuss the use of different soft computing techniques like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and etc. to solve TSP.


2020 ◽  
Vol 12 (6) ◽  
pp. 2218 ◽  
Author(s):  
Binh Thai Pham ◽  
Chongchong Qi ◽  
Lanh Si Ho ◽  
Trung Nguyen-Thoi ◽  
Nadhir Al-Ansari ◽  
...  

Determination of shear strength of soil is very important in civil engineering for foundation design, earth and rock fill dam design, highway and airfield design, stability of slopes and cuts, and in the design of coastal structures. In this study, a novel hybrid soft computing model (RF-PSO) of random forest (RF) and particle swarm optimization (PSO) was developed and used to estimate the undrained shear strength of soil based on the clay content (%), moisture content (%), specific gravity (%), void ratio (%), liquid limit (%), and plastic limit (%). In this study, the experimental results of 127 soil samples from national highway project Hai Phong-Thai Binh of Vietnam were used to generate datasets for training and validating models. Pearson correlation coefficient (R) method was used to evaluate and compare performance of the proposed model with single RF model. The results show that the proposed hybrid model (RF-PSO) achieved a high accuracy performance (R = 0.89) in the prediction of shear strength of soil. Validation of the models also indicated that RF-PSO model (R = 0.89 and Root Mean Square Error (RMSE) = 0.453) is superior to the single RF model without optimization (R = 0.87 and RMSE = 0.48). Thus, the proposed hybrid model (RF-PSO) can be used for accurate estimation of shear strength which can be used for the suitable designing of civil engineering structures.


Author(s):  
Mohammad Hossein Fazel Zarandi ◽  
Milad Avazbeigi ◽  
Meysam Alizadeh

In today’s competitive markets, prediction of financial variables has become a critical issue. Especially in stock market analysis where a wrong prediction may result in a big loss in terms of time and money, having a robust prediction is a crucial issue. To model the chaotic, noisy, and evolving behavior of stock market data, new powerful methods should be developed. Soft Computing methods have shown a great confidence in such environments where there are many uncertain factors. Also it has been observed through many experiments that the hybridization of different soft computing techniques such as fuzzy logic, neural networks, and meta-heuristics usually results in better results than simply using one method. This chapter presents an adaptive neuro-fuzzy inference system (ANFIS), trained by the particle swarm optimization (PSO) algorithm for stock price prediction. Instead of previous works that have emphasized on gradient base or least square (LS) methods for training the neural network, four different strategies of PSO are implemented: gbest, lbest-a, lbest-b, and Euclidean. In the proposed fuzzy rule based system some technical and fundamental indexes are applied as input variables. In order to generate membership functions (MFs), a robust noise rejection clustering algorithm is developed. The proposed neuro-fuzzy model is applied for an automotive part-making manufactory in an Asia stock market. The results show the superiority of the proposed model in comparison with the available models in terms of error minimization, robustness, and flexibility.


Sign in / Sign up

Export Citation Format

Share Document