ground vibration
Recently Published Documents


TOTAL DOCUMENTS

945
(FIVE YEARS 269)

H-INDEX

47
(FIVE YEARS 12)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kate Huihsuan Chen ◽  
Ting-Chen Yeh ◽  
Yaochieh Chen ◽  
Christopher W. Johnson ◽  
Cheng-Horng Lin ◽  
...  

AbstractExamining continuous seismic data recorded by a dense broadband seismic network throughout Taipei shows for the first time, the nature of seismic noise in this highly populated metropolitan area. Using 140 broadband stations in a 50 km × 69 km area, three different recurring, strong noise signals characterized by dominant frequencies of 2–20 Hz, 0.25–1 Hz, and < 0.2 Hz are explored. At frequencies of 2–20 Hz, the seismic noise exhibits daily and weekly variations, and a quiescence during the Chinese New Year holidays. The largest amplitude occurred at a station located only 400 m from a traffic-roundabout, one of the busiest intersections in Taipei, suggesting a possible correlation between large amplitude and traffic flow. The median daily amplitude for the < 0.2 Hz and 0.2–1.0 Hz frequency bands is mostly synchronized with high similarity between stations, indicating that the sources are persistent oceanic or atmospheric perturbations across a large area. The daily amplitude for the > 2 Hz band, however, is low, indicating a local source that changes on shorter length scales. Human activities responsible for the 2–40 Hz energy in the city, we discovered, are able to produce amplitudes approximately 2 to 1500 times larger than natural sources. Using the building array deployed in TAIPEI 101, the tallest building in Taiwan, we found the small but repetitive ground vibration induced by traffic has considerable effect on the vibration behavior of the high-rise building. This finding urges further investigation not only on the dynamic and continuous interaction between vehicles, roads, and buildings, but also the role of soft sediment on such interaction.


Author(s):  
Slimane Ouakka ◽  
Olivier Verlinden ◽  
Georges Kouroussis

AbstractVibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their residents. Among the different sources, the one coming from the rail transit system will play a central concern in the following years due to its sustainability. Ground-borne vibration and noise assessment as well as techniques to mitigate them become key elements of the environmental impact and the global enlargement planned for the railway industry. This paper aims to describe and compare the different mitigation systems existing and reported in literature through a comprehensive state of the art analysis providing the performance of each measure. First, an introduction to the ground-borne vibration and noise generated from the wheel-rail contact and its propagation through the transmission path is presented. Then, the impact and the different ways of evaluating and assessing these effects are presented, and the insertion loss indicator is introduced. Next, the different mitigation measures at different levels (vehicle, track, transmission path and receiver) are discussed by describing their possible application and their efficiency in terms of insertion loss. Finally, a summary with inputs of how it is possible to address the future of mitigation systems is reported.


Author(s):  
Muhammad Arif Bin Jalil

Abstract: This study will demonstrate a strain sensor based on the optical Fibre Bragg Grating (FBG) sensing technology as it is known to have stable and reliable wavelength and response as function of the applied strain. This kind of sensor can perform accurate measurements of small ground vibration and monitor seismic activity thanks to their high sensitivity to dynamic strains induced by acceleration variation which can use to prevent property intrusion or burglary. To understand the FBG sensor more, few of its characteristics such as strain, spectral reflectivity and bandwidth and their connection with the fibre grating length and refractive index is being studied. Keywords: Fibre Bragg Grating(FBG); strain sensor; strain; spectral reflectivity; bandwidth; fibre grating length; refractive index; safety; property intrusion.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weijie Ding ◽  
Bei Jia ◽  
Dianshu Liu

Blasting excavation is extensively used in tunnel construction, and the adverse effect of ground vibration induced by blasting on surrounding structures and inhabitants is a critical problem. This study aims to investigate the tunnel hollow effect on triaxial peak particle velocities (PPV) and dominant frequencies induced by electronic detonator. Field experiments were conducted in a shallow tunnel construction site and the ground vibration waveforms were recorded. Variational mode decomposition (VMD) was applied to denoise and correct the zero-drift phenomenon, and the proposed method of selecting the optimal parameter was verified. A series of statistical analyses and tests were performed to evaluate the differences of peak particle velocity and dominant frequency among various monitoring points. The results showed that the hollow effect on Z-axis PPV is significant, and triaxial PPV is also affected when the horizontal distance exceeds 30 m. The hollow effect on dominant frequency could not be identified since the hollow of tunnel is a free face, and the dominant frequency of reflected wave remains unchanged. An augmented factor of 1.229 is determined carefully as the hollow effect factor on PPV. Therefore, blasting vibration induced by electronic detonator of the excavated zone should be attached with greater importance, and hollow effect on PPV should be considered in the blasting design of tunnel excavation.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Quang Hieu TRAN

Blasting is one of the most effective methods for fragmenting rock in quarries. Nevertheless, itsadverse effects are significant, especially blast-induced ground vibration. Field measurement andempirical equations are simple methods to determine and estimate the intensity of blast-induced groundvibration. However, we cannot evaluate the effects of blast-induced ground vibration on the surroundingenvironment based on these outcomes. Therefore, this study explores the relation between seismiccoefficient and rock properties through field measurements and an empirical model for evaluating theeffect of blast-induced ground vibration in open-pit mines. Accordingly, the seismic coefficient (K) isconsidered the main objective in this study. Firstly, it was determined based on the rock properties.Subsequently, an empirical model for estimating blast-induced ground vibration was developed based onfield measurements. This empirical equation was then expanded to determine K to check whether itmatches the determined K by the rock properties. Finally, it was used as the threshold to determine themaximum explosive charged per delay to ensure the safety of the surrounding environment from blastinducedground vibration. For this aim, the Thuong Tan III quarry (in Binh Duong province, Vietnam)was selected as a case study. Fifth-teen blasting events with a total of 75 blast-induced ground vibrationvalues were recorded and collected. An empirical equation for estimating blast-induced ground vibrationwas then developed based on the collected dataset, and K was determined in the range of 539 to 713 forthe Thuong Tan III quarry. Based on the measured blast-induced ground vibrations, developed empiricalmodel, and K values, the Phase 2 software was applied to simulate the effects of blast-induced groundvibration on the stability of slopes as one of the impacts on the surrounding environment. From thesimulation results, we can determine the maximum explosive charged per delay for each type of rock toensure the stability of the slope.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mhia Md Zaglul Shahadat ◽  
Takeshi Mizuno ◽  
Masaya Takasaki ◽  
Fazlur Rashid ◽  
Yuji Ishino

This paper presents the isolation of vibration through the acceleration feedback of the Kalman filter. In this paper, vibration isolation was analyzed both analytically and experimentally through the estimation of the Kalman filter (KF). A negative stiffness mechanism was used to reduce the level of vibration for the developed dynamic system. The technique of negative stiffness can provide stiffness of infinite level to low stiffness as well as disturbance generated by the ground vibration directly. The performance of an isolation system through a mechanism of negative stiffness was improved by the addition of acceleration feedback. Acceleration was measured using a microelectromechanical (MEMS) type accelerometer instead of traditional servo type accelerometers due to lower cost. However, the output of a microelectromechanical (MEMS) type accelerometer is usually noisy. To avoid this difficulty, an acceleration that was estimated by a Kalman filter was considered in the acceleration feedback instead of directly measured acceleration. The dynamic behaviors of the system were compared for both the Kalman-filtered acceleration and the directly measured acceleration feedback. It is observed that the former has a significant effect on the improvement of the characteristics of the vibration isolation systems than later.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 390
Author(s):  
Pengtao Shi ◽  
Feng Liu ◽  
Yingsong Gu ◽  
Zhichun Yang

A flight test platform is designed to conduct an experimental study on the body freedom flutter of a BWB flying wing, and a flight test is performed by using the proposed platform. A finite element model of structural dynamics is built, and unsteady aerodynamics and aeroelastic characteristics of the flying wing are analyzed by the doublet lattice method and g-method, respectively. Based on the foregoing analyses, a low-cost and low-risk flying-wing test platform is designed and manufactured. Then, the ground vibration test is implemented, and according to its results, the structural dynamics model is updated. The flight test campaign shows that the body freedom flutter occurs at low flight speed, which is consistent with the updated analytical result. Finally, an active flutter suppression controller is designed using a genetic algorithm for the developed flying wing for future tests, considering the gains and sensor location as design parameters. The open- and closed-loop analyses in time- and frequency-domain analyses demonstrate that the designed controller can improve the instability boundary of the closed-loop system effectively.


Mining ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 315-334
Author(s):  
Ali Y. Al-Bakri ◽  
Mohammed Sazid

Drilling and blasting remain the preferred technique used for rock mass breaking in mining and construction projects compared to other methods from an economic and productivity point of view. However, rock mass breaking utilizes only a maximum of 30% of the blast explosive energy, and around 70% is lost as waste, thus creating negative impacts on the safety and surrounding environment. Blast-induced impact prediction has become very demonstrated in recent research as a recommended solution to optimize blasting operation, increase efficiency, and mitigate safety and environmental concerns. Artificial neural networks (ANN) were recently introduced as a computing approach to design the computational model of blast-induced fragmentation and other impacts with proven superior capability. This paper highlights and discusses the research articles conducted and published in this field among the literature. The prediction models of rock fragmentation and some blast-induced effects, including flyrock, ground vibration, and back-break, were detailed investigated in this review. The literature showed that applying the artificial neural network for blast events prediction is a practical way to achieve optimized blasting operation with reduced undesirable effects. At the same time, the examined papers indicate a lack of articles focused on blast-induced fragmentation prediction using the ANN technique despite its significant importance in the overall economy of whole mining operations. As well, the investigation revealed some lack of research that predicted more than one blast-induced impact.


Author(s):  
Ruishan Cheng ◽  
Zilong Zhou ◽  
Wensu Chen ◽  
Hong Hao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document