Human Activity Recognition by Using Different Deep Learning Approaches for Wearable Sensors

Author(s):  
Çağatay Berke Erdaş ◽  
Selda Güney

The rise in life expectancy rate and dwindled birth rate in new age society has led to the phenomenon of population ageing which is being witnessed across the world from past few decades. India is also a part of this demographic transition which will have the direct impact on the societal and economic conditions of the country. In order to effectively deal with the prevailing phenomenon, stakeholders involved are coming up with the Information and Communication Technology (ICT) based ecosystem to address the needs of elderly people such as independent living, activity recognition, vital health sign monitoring, prevention from social isolation etc. Ambient Assisted Living (AAL) is one such ecosystem which is capable of providing safe and secured living environment for the elderly and disabled people. In this paper we will focus on reviewing the sensor based Human Activity Recognition (HAR) and Vital Health Sign Monitoring (VHSM) which is applicable for AAL environments. At first we generally describe the AAL environment. Next we present brief insights into sensor modalities and different deep learning architectures. Later, we survey the existing literature for HAR and VHSM based on sensor modality and deep learning approach used.


Author(s):  
Anna Ferrari ◽  
Daniela Micucci ◽  
Marco Mobilio ◽  
Paolo Napoletano

AbstractHuman activity recognition (HAR) is a line of research whose goal is to design and develop automatic techniques for recognizing activities of daily living (ADLs) using signals from sensors. HAR is an active research filed in response to the ever-increasing need to collect information remotely related to ADLs for diagnostic and therapeutic purposes. Traditionally, HAR used environmental or wearable sensors to acquire signals and relied on traditional machine-learning techniques to classify ADLs. In recent years, HAR is moving towards the use of both wearable devices (such as smartphones or fitness trackers, since they are daily used by people and they include reliable inertial sensors), and deep learning techniques (given the encouraging results obtained in the area of computer vision). One of the major challenges related to HAR is population diversity, which makes difficult traditional machine-learning algorithms to generalize. Recently, researchers successfully attempted to address the problem by proposing techniques based on personalization combined with traditional machine learning. To date, no effort has been directed at investigating the benefits that personalization can bring in deep learning techniques in the HAR domain. The goal of our research is to verify if personalization applied to both traditional and deep learning techniques can lead to better performance than classical approaches (i.e., without personalization). The experiments were conducted on three datasets that are extensively used in the literature and that contain metadata related to the subjects. AdaBoost is the technique chosen for traditional machine learning, while convolutional neural network is the one chosen for deep learning. These techniques have shown to offer good performance. Personalization considers both the physical characteristics of the subjects and the inertial signals generated by the subjects. Results suggest that personalization is most effective when applied to traditional machine-learning techniques rather than to deep learning ones. Moreover, results show that deep learning without personalization performs better than any other methods experimented in the paper in those cases where the number of training samples is high and samples are heterogeneous (i.e., they represent a wider spectrum of the population). This suggests that traditional deep learning can be more effective, provided you have a large and heterogeneous dataset, intrinsically modeling the population diversity in the training process.


2019 ◽  
Vol 11 (9) ◽  
pp. 1068 ◽  
Author(s):  
Xinyu Li ◽  
Yuan He ◽  
Xiaojun Jing

Radar, as one of the sensors for human activity recognition (HAR), has unique characteristics such as privacy protection and contactless sensing. Radar-based HAR has been applied in many fields such as human–computer interaction, smart surveillance and health assessment. Conventional machine learning approaches rely on heuristic hand-crafted feature extraction, and their generalization capability is limited. Additionally, extracting features manually is time–consuming and inefficient. Deep learning acts as a hierarchical approach to learn high-level features automatically and has achieved superior performance for HAR. This paper surveys deep learning based HAR in radar from three aspects: deep learning techniques, radar systems, and deep learning for radar-based HAR. Especially, we elaborate deep learning approaches designed for activity recognition in radar according to the dimension of radar returns (i.e., 1D, 2D and 3D echoes). Due to the difference of echo forms, corresponding deep learning approaches are different to fully exploit motion information. Experimental results have demonstrated the feasibility of applying deep learning for radar-based HAR in 1D, 2D and 3D echoes. Finally, we address some current research considerations and future opportunities.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1669
Author(s):  
Philip Boyer ◽  
David Burns ◽  
Cari Whyne

Out-of-distribution (OOD) in the context of Human Activity Recognition (HAR) refers to data from activity classes that are not represented in the training data of a Machine Learning (ML) algorithm. OOD data are a challenge to classify accurately for most ML algorithms, especially deep learning models that are prone to overconfident predictions based on in-distribution (IIN) classes. To simulate the OOD problem in physiotherapy, our team collected a new dataset (SPARS9x) consisting of inertial data captured by smartwatches worn by 20 healthy subjects as they performed supervised physiotherapy exercises (IIN), followed by a minimum 3 h of data captured for each subject as they engaged in unrelated and unstructured activities (OOD). In this paper, we experiment with three traditional algorithms for OOD-detection using engineered statistical features, deep learning-generated features, and several popular deep learning approaches on SPARS9x and two other publicly-available human activity datasets (MHEALTH and SPARS). We demonstrate that, while deep learning algorithms perform better than simple traditional algorithms such as KNN with engineered features for in-distribution classification, traditional algorithms outperform deep learning approaches for OOD detection for these HAR time series datasets.


Sign in / Sign up

Export Citation Format

Share Document