Truncation: A New Approach to Neural Network Reduction

Author(s):  
Alexey A. Nevzorov ◽  
Sergey V. Perchenko ◽  
Dmitry A. Stankevich
2018 ◽  
Vol 10 (2) ◽  
pp. 84-94 ◽  
Author(s):  
M. Pershina ◽  
V.S. Bouksim ◽  
K. Arhid ◽  
F.R. Zakani ◽  
M. Aboulfatah ◽  
...  

Author(s):  
Siyu Zhang ◽  
R. Ganesan ◽  
T. S. Sankar

Abstract The problem of estimating an unknown multivariate function from on-line vibration measurements, for determining the conditions of a machine system and for estimating its service life is considered. This problem is formulated into a multiple-index based trend analysis problem and the corresponding indices for trend analysis are extracted from the on-line vibration data. Selection of these indices is based on the simultaneous consideration of commonly-observed faults or malfunctions in the machine system being monitored. A neural network algorithm that has been developed by the present authors for multiple-index based regression is adapted to perform the trend analysis of a machine system. Applications of this neural network algorithm to the condition monitoring and life estimation of both a bearing system as well as a gearbox are fully demonstrated. The efficiency and computational supremacy of the new algorithm are established through comparing with the performance of Self-Organizing Mapping (SOM) and Constrained Topological Mapping (CTM) algorithms. Further, the usefulness of multiple-index based trend analysis in precisely predicting the condition and service life of a machine system is clearly demonstrated. Using on-line vibration signal to constitute the set of variables for trend analysis, and employing the newly-developed self-organizing neural algorithm for performing the trend analysis, a new approach is developed for machinery monitoring and diagnostics.


2018 ◽  
Vol 189 ◽  
pp. 04016
Author(s):  
Viet-Hung Nguyen ◽  
Minh-Tuan Nguyen ◽  
Yong-Hwa Kim

Orthogonal frequency division multiplexing (OFDM) is widely used in wired or wireless transmission systems. In the structure of OFDM, a cycle prefix (CP) has been exploited to avoid the effects of inter-symbol interference (ISI) and inter-carrier interference (ICI). This paper proposes a new approach to transmit the signals without CP transmission. Using the deep neural network, the proposed OFDM system transmits data without the CP. Simulation results show that the proposed scheme can estimate the CP at the receiver and overcome the effect of ISI.


1993 ◽  
Vol 16 (4) ◽  
pp. 805-810
Author(s):  
E. Elizalde ◽  
A. Romeo

We take a new approach to the generation of Jacobi theta function identities. It is complementary to the procedure which makes use of the evaluation of Parseval-like identities for elementary cylindrically-symmetric functions on computer holograms. Our method is more simple and explicit than this one, which was an outcome of the construction of neurocomputer architectures through the Heisenberg model.


Sign in / Sign up

Export Citation Format

Share Document