Flow-based seismic risk assessment of a water transmission network employing probabilistic seismic hazard analysis

2020 ◽  
Author(s):  
Sungsik Yoon ◽  
Young-Joo Lee ◽  
Hyung-Jo Jung
2017 ◽  
Vol 8 (2) ◽  
pp. 39-59 ◽  
Author(s):  
Swarup Ghosh ◽  
Subrata Chakraborty

This article outlines the performance-based seismic risk assessment (PBSRA) of structures requiring probabilistic seismic hazard analysis (PSHA) to obtain hazard curves and an evaluation of the demand model by a nonlinear structural response analysis under properly selected ground motion records. Unfortunately, such site-specific information is not readily available for Northeast region of India. The present study focuses on these two aspects to supplement the PBSRA. The estimations of hazard curves are demonstrated by considering the seismicity within 300 km radius around the considered locations and specified exposure period. Due to limited availability of natural records in this region, synthetic accelerograms are generated using stochastic point source models by identifying the most contributing magnitude distance combinations from disaggregation of the PSHA results. The significant variabilities observed in the estimated hazard, synthetic accelerograms and nonlinear building responses in the various locations indicate the need of explicit site-specific analysis for PBRSA of structures in the region.


Author(s):  
Douglas G. Honegger ◽  
Mujib Rahman ◽  
Humberto Puebla ◽  
Dharma Wijewickreme ◽  
Anthony Augello

Terasen Gas Inc. (Terasen) operates a natural gas supply and distribution system situated within one of the zones of the highest seismic activity in Canada. The region encompasses significant areas underlain by marine, deltaic, and alluvial soil deposits, some of which are considered to be susceptible to liquefaction and large ground movements when subjected to earthquake ground shaking. Terasen undertook an assessment of seismic risks to its transmission and key intermediate pressure pipelines in the Lower Mainland in 1994 [1]. The seismic assessment focused on approximately 500 km of steel pipelines ranging from NPS 8 to NPS 42 and operating at pressures from 1900 to 4020 kPa. The 1994 risk assessment provided the basis for detailed site-specific assessment and seismic upgrade programs to retrofit its existing system to reduce risks to acceptable levels. While the general approach undertaken in 1994 remains technically sound, advancements have been made over the past 15 years in the understanding of earthquake hazards and their impact on pipelines. In particular, estimates of the earthquake ground shaking hazard in British Columbia as published by Geological Survey of Canada (GSC) have recently been updated and incorporated into the 2005 National Building Code of Canada (NBCC). In addition, empirical methods of estimating lateral spread ground displacements have been improved as new case-history information has become available. Given these changes, Terasen decided in 2009 to reexamine the seismic risk to Terasen’s pipelines. The scope of the updated seismic risk study was expanded over that in 1994 to include pipelines on Vancouver Island and the Interior of British Columbia. For regional assessments, estimates of lateral spread displacements are necessarily based upon empirical formulations that relate displacement to variables of earthquake severity (earthquake magnitude and distance), susceptibility to liquefaction (density, grain size, fines content), and topography (distance from a river bank or ground slope). Implementing empirical formulae with the results of probabilistic seismic hazard calculations is complicated by the fact that the empirical approach requires earthquake magnitude and distance, as a parametric couple, to be related to the ground shaking severity. However, but such a relationship does not exist in the estimates of mean or modal earthquake magnitude and distance disaggregated from a probabilistic seismic hazard analysis. This paper presents an overview of the approach to regional risk assessment undertaken by Terasen and discusses the unique approach adopted for determining lateral spread displacements consistent with the probabilistic seismic hazard analysis.


KURVATEK ◽  
2017 ◽  
Vol 1 (2) ◽  
pp. 41-47
Author(s):  
Marinda noor Eva

Penelitian mengenai daerah rawan gempa bumi ini menggunakan Metode Probabilistic Seismic Hazard Analysis (PSHA) di Provinsi Sulawesi Barat, dengan tujuan untuk memetakan tingkat kerawanan bahaya gempa bumi di Kabupaten Mamasa. Penelitian ini menggunakan data kejadian gempa bumi di Pulau Sulawesi dan sekitarnya dari tahun 1900 – 2015. Hasil pengolahan PSHA menggunakan Software Ez-Frisk 7.52 yang menghasilkan nilai hazard di batuan dasar pada kondisi PGA (T = 0,0 sekon), dengan periode ulang 500 tahun dan 2500 tahun berkisar antara (149,54 – 439,45) gal dan (287,18 – 762,81) gal. Nilai hazard di batuan dasar dengan kondisi spektra T = 0,2 sekon untuk periode ulang 500 tahun dan 2500 tahun adalah (307,04 – 1010,90) gal dan (569,48 – 1849,78) gal. Nilai hazard di batuan dasar dengan kondisi spektra T = 1,0 sekon untuk periode ulang 500 tahun dan 2500 tahun diperoleh nilai (118,01 – 265,75) gal dan (223,74 – 510,92) gal. Berdasarkan analisis PSHA, nilai PGA di Provinsi Sulawesi Barat dominan dipengaruhi oleh sumber gempa sesar.


Author(s):  
Y. Yuliastuti ◽  
T. Setiadipura ◽  
A. B. Wicaksono ◽  
E. E. Alhakim ◽  
H. Suntoko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document