rupture model
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 43)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 164 ◽  
pp. 108613
Author(s):  
Pengcheng Gao ◽  
Bin Zhang ◽  
Jishen Li ◽  
Shaowei Tang ◽  
Jianqiang Shan

Author(s):  
Jongmin Kim ◽  
Min-Chul Kim ◽  
Joonyeop Kwon

Abstract The materials used previously for steam generator tubes around the world have been replaced and will be replaced by Alloy 690 given its improved corrosion resistance relative to that of Alloy 600. However, studies of the high- temperature creep and creep-rupture characteristics of steam generator tubes made of Alloy 690 are insufficient compared to those focusing on Alloy 600. In this study, several creep tests were conducted using half tube shape specimens of the Alloy 690 material at temperatures ranging from 650 to 850C and stresses in the range of 30 to 350 MPa, with failure times to creep rupture ranging from 3 to 870 hours. Based on the creep test results, creep life predictions were then made using the well-known Larson Miller Parameter method. Steam generator tube rupture tests were also conducted under the conditions of a constant temperature and pressure ramp using steam generator tube specimens. The rupture test equipment was designed and manufactured to simulate the transient state (rapid temperature and pressure changes) in the event of a severe accident condition. After the rupture test, the damage to the steam generator tubes was predicted using a creep rupture model and a flow stress model. A modified creep rupture model for Alloy 690 steam generator tube material is proposed based on the experimental results. A correction factor of 1.7 in the modified creep rupture model was derived for the Alloy 690 material. The predicted failure pressure was in good agreement with the experimental failure pressure.


Author(s):  
Yong Zhang ◽  
Wanpeng Feng ◽  
Xingxing Li ◽  
Yajing Liu ◽  
Jieyuan Ning ◽  
...  

Abstract The 8 August 2017 Mw 6.5 Jiuzhaigou earthquake occurred in a tectonically fractured region in southwest China. We investigate the multifault coseismic rupture process by jointly analyzing teleseismic, strong-motion, high-rate Global Positioning System, and Interferometric Synthetic Aperture Radar (InSAR) datasets. We clearly identify two right-stepping fault segments and a compressional stepover based on variations in focal mechanisms constrained by coseismic InSAR deformation data. The average geometric parameters of the northwest and southeast segments are strike = 130°/dip = 57° and strike = 151°/dip = 70°, respectively. The rupture model estimated from a joint inversion of the seismic and geodetic datasets indicates that the rupture initiated on the southeastern segment and jumped to the northwestern segment, resulting in distinctive slip patches on the two segments. A 4-km-long coseismic slip gap was identified around the stepover, consistent with the aftershock locations and mechanisms. The right-stepping segmentation and coseismic rupture across the compressional stepover exhibited by the 2017 Jiuzhaigou earthquake are reminiscent of the multifault rupture pattern during the 1976 Songpan earthquake sequence farther south along the Huya fault system in three successive Ms∼7 events. Although the common features of fault geometry and stepover may control the similarity in event locations and focal mechanisms of the 2017 and 1976 sequences, the significantly wider (~15 km) stepover in the 1976 sequence likely prohibited coseismic rupture jumping and hence reduced seismic hazard.


2021 ◽  
Vol 158 ◽  
pp. 108305
Author(s):  
Pengcheng Gao ◽  
Bin Zhang ◽  
Jishen Li ◽  
Shaowei Tang ◽  
Jianqiang Shan

Author(s):  
Luis Ceferino ◽  
Percy Galvez ◽  
Jean-Paul Ampuero ◽  
Anne Kiremidjian ◽  
Gregory Deierlein ◽  
...  

ABSTRACT This article introduces a framework to supplement short historical catalogs with synthetic catalogs and determine large earthquakes’ recurrence. For this assessment, we developed a parameter estimation technique for a probabilistic earthquake occurrence model that captures time and space interactions between large mainshocks. The technique is based on a two-step Bayesian update that uses a synthetic catalog from physics-based simulations for initial parameter estimation and then the historical catalog for further calibration, fully characterizing parameter uncertainty. The article also provides a formulation to combine multiple synthetic catalogs according to their likelihood of representing empirical earthquake stress drops and Global Positioning System-inferred interseismic coupling. We applied this technique to analyze large-magnitude earthquakes’ recurrence along 650 km of the subduction fault’s interface located offshore Lima, Peru. We built nine 2000 yr long synthetic catalogs using quasi-dynamic earthquake cycle simulations based on the rate-and-state friction law to supplement the 450 yr long historical catalog. When the synthetic catalogs are combined with the historical catalog without propagating their uncertainty, we found average relative reductions larger than 90% in the recurrence parameters’ uncertainty. When we propagated the physics-based simulations’ uncertainty to the posterior, the reductions in uncertainty decreased to 60%–70%. In two Bayesian assessments, we then show that using synthetic catalogs results in higher parameter uncertainty reductions than using only the historical catalog (69% vs. 60% and 83% vs. 80%), demonstrating that synthetic catalogs can be effectively combined with historical data, especially in tectonic regions with short historical catalogs. Finally, we show the implications of these results for time-dependent seismic hazard.


2021 ◽  
Vol 261 ◽  
pp. 106922
Author(s):  
Alan R. Nelson ◽  
Christopher B. DuRoss ◽  
Robert C. Witter ◽  
Harvey M. Kelsey ◽  
Simon E. Engelhart ◽  
...  

Author(s):  
Xu Zhang ◽  
Li-Sheng Xu ◽  
Lei Yi ◽  
Wanpeng Feng

Abstract On 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou town, Sichuan Province, China, rupturing an unmapped fault, which is adjacent to the Maqu seismic gap in the Min Shan uplift zone in the easternmost part of the Bayan Har block. Having summarized the previous studies on the source of this earthquake, we confirmed the rupture model by jointly inverting the teleseismic P-wave and SH-wave data, Interferometric Synthetic Aperture Radar line-of-sight displacement data, and the near-field seismic and strong-motion data, a most complete dataset until now. The confirmation showed that a scalar seismic moment of 6.6×1018  N·m was released (corresponding to a moment magnitude of Mw 6.5), and 95% of the release occurred in the first 10 s. The slip area was composed of two asperities, with a horizontal extension of ∼20  km and a depth range of ∼2–15  km. A bilateral extending occurred at shallow depths, but the rupturing upward from deep depth dominated in the early time. The rupture process was found generally featuring the slip-pulse mode, which was related to the weak prestress condition. The aftershocks almost took place in gaps of the mainshock slip because of the coulomb stress change. Combining the aftershock relocations, aftershock focal mechanism solutions, and our confirmed rupture model, we suggest that the seismogenic fault was a northward extension of the mapped Huya fault. The occurrence of this earthquake made the Maqu seismic gap at a higher level of seismic risk, in addition to the moderate to high strain accumulation on the easternmost tip of the Kunlun fault system and the weak lower crust below.


Sign in / Sign up

Export Citation Format

Share Document