ground shaking
Recently Published Documents


TOTAL DOCUMENTS

518
(FIVE YEARS 193)

H-INDEX

33
(FIVE YEARS 7)

Author(s):  
Davis T. Engler ◽  
C. Bruce Worden ◽  
Eric M. Thompson ◽  
Kishor S. Jaiswal

ABSTRACT Rapid estimation of earthquake ground shaking and proper accounting of associated uncertainties in such estimates when conditioned on strong-motion station data or macroseismic intensity observations are crucial for downstream applications such as ground failure and loss estimation. The U.S. Geological Survey ShakeMap system is called upon to fulfill this objective in light of increased near-real-time access to strong-motion records from around the world. Although the station data provide a direct constraint on shaking estimates at specific locations, these data also heavily influence the uncertainty quantification at other locations. This investigation demonstrates methods to partition the within- (phi) and between-event (tau) uncertainty estimates under the observational constraints, especially when between-event uncertainties are heteroscedastic. The procedure allows the end users of ShakeMap to create separate between- and within-event realizations of ground-motion fields for downstream loss modeling applications in a manner that preserves the structure of the underlying random spatial processes.


2022 ◽  
Author(s):  
Luc Illien ◽  
Christoph Sens-Schönfelder ◽  
Christoph Andermann ◽  
Odin Marc ◽  
Kristen Cook ◽  
...  

Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behaviour has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations $\delta v$ retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 Mw 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behaviour we inferred from a previously calibrated groundwater model. The fitting of the $\delta v$ data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behaviour, interpreted as an enhanced permeability in the shallow subsurface, lasts for $\sim$ 6 months and is shorter than the damage relaxation ($\sim$ 1 year). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery.


2022 ◽  
Author(s):  
Fernando Lopez ◽  
Manuel Navarro ◽  
Sergio Molina

2021 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Zorigt Tumurbaatar ◽  
Hiroyuki Miura ◽  
Tsoggerel Tsamba

During the last two decades, the rapid urbanization movement has increased the concentration of population and buildings in Ulaanbaatar city (UB), Mongolia. There are several active faults around UB. The estimated maximum magnitude of 7 in the Emeelt fault has been expected to significantly impact the UB region because the fault is only 20 km from the city. To consider the disaster mitigation planning for such large earthquakes, assessments of ground shaking intensities and building damage for the scenarios are crucial. In this study, we develop the building inventory data in UB, including structural types, construction year, height, and construction cost in order to assess the buildings’ vulnerability (repair cost) due to a scenario earthquake. The construction costs are estimated based on the procedure of the Mongolian construction code from the coefficients of cost per floor area for each structural type, and coefficients for heating system, floor areas, and buildings’ locations. Finally, the scenario’s economic loss of the damaged buildings is evaluated using the developed building inventory, global vulnerability curves of GAR-13, and estimated spectral accelerations.


2021 ◽  
pp. 875529302110520
Author(s):  
Mark D Petersen ◽  
Allison M Shumway ◽  
Peter M Powers ◽  
Morgan P Moschetti ◽  
Andrea L Llenos ◽  
...  

The 2021 US National Seismic Hazard Model (NSHM) for the State of Hawaii updates the previous two-decade-old assessment by incorporating new data and modeling techniques to improve the underlying ground shaking forecasts of tectonic-fault, tectonic-flexure, volcanic, and caldera collapse earthquakes. Two earthquake ground shaking hazard forecasts (public policy and research) are produced that differ in how they account for declustered catalogs. The earthquake source model is based on (1) declustered earthquake catalogs smoothed with adaptive methods, (2) earthquake rate forecasts based on three temporally varying 60-year time periods, (3) maximum magnitude criteria that extend to larger earthquakes than previously considered, (4) a separate Kīlauea-specific seismogenic caldera collapse model that accounts for clustered event behavior observed during the 2018 eruption, and (5) fault ruptures that consider historical seismicity, GPS-based strain rates, and a new Quaternary fault database. Two new Hawaii-specific ground motion models (GMMs) and five additional global models consistent with Hawaii shaking data are used to forecast ground shaking at 23 spectral periods and peak parameters. Site effects are calculated using western US and Hawaii specific empirical equations and provide shaking forecasts for 8 site classes. For most sites the new analysis results in similar spectral accelerations as those in the 2001 NSHM, with a few exceptions caused mostly by GMM changes. Ground motions are the highest in the southern portion of the Island of Hawai’i due to high rates of forecasted earthquakes on décollement faults. Shaking decays to the northwest where lower earthquake rates result from flexure of the tectonic plate. Large epistemic uncertainties in source characterizations and GMMs lead to an overall high uncertainty (more than a factor of 3) in ground shaking at Honolulu and Hilo. The new shaking model indicates significant chances of slight or greater damaging ground motions across most of the island chain.


Author(s):  
Larisa Karpenko ◽  
Evgenia Aleshina ◽  
Sergey Kurtkin ◽  
Evgeniy Vedernikov ◽  
Vladimir Atrokhin

The results of fundamental and applied research, carried out by Magadan Branch of GS RAS during 2016-2020 in Magadan and Chukotka regions are presenting. Estimation of Seismic hazard of Russia’s Northeast (Magadan region) and seismic hazard maps for recurrence periods of 500, 1000 and 5000 years in scale close to that of detailed seismic zoning (DSZ) were made in cooperation with Institute of the Earth’s Physics RAS. In course of this work the estimation of initial seismic intensity and parameters of possible ground shaking in areas of critical facilities of Magadan region were made. For all of them a seismic micro zonation was carried out with methods of direct earthquake registration and comparing acoustic impedance. As result, a seismic amplification and intensity of seismic impact on the soils under main critical facilities were obtaining. The research results are shown on detailed seismic zoning maps that are basic for building projects of objects above.


Author(s):  
Matteo Picozzi ◽  
Fabrice Cotton ◽  
Dino Bindi ◽  
Antonio Emolo ◽  
Guido Maria Adinolfi ◽  
...  

ABSTRACT Fault zones are major sources of hazard for many populated regions around the world. Earthquakes still occur unanticipated, and research has started to observe fault properties with increasing spatial and temporal resolution, having the goal of detecting signs of stress accumulation and strength weakening that may anticipate the rupture. The common practice is monitoring source parameters retrieved from measurements; however, model dependence and strong uncertainty propagation hamper their usage for small and microearthquakes. Here, we decipher the ground motion (i.e., ground shaking) variability associated with microseismicity detected by dense seismic networks at a near-fault observatory in Irpinia, Southern Italy, and obtain an unprecedentedly sharp picture of the fault properties evolution both in time and space. We discuss the link between the ground-motion intensity and the source parameters of the considered microseismicity, showing a coherent spatial distribution of the ground-motion intensity with that of corner frequency, stress drop, and radiation efficiency. Our analysis reveals that the ground-motion intensity presents an annual cycle in agreement with independent geodetic displacement observations from two Global Navigation Satellite System stations in the area. The temporal and spatial analyses also reveal a heterogeneous behavior of adjacent fault segments in a high seismic risk Italian area. Concerning the temporal evolution of fault properties, we highlight that the fault segment where the 1980 Ms 6.9 Irpinia earthquake nucleated shows changes in the event-specific signature of ground-motion signals since 2013, suggesting changes in their frictional properties. This evidence, combined with complementary information on the earthquake frequency–magnitude distribution, reveals differences in fault segment response to tectonic loading, suggesting rupture scenarios of future moderate and large earthquakes for seismic hazard assessment.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3656
Author(s):  
Eyal Shalev ◽  
Hallel Lutzky ◽  
Ittai Kurzon ◽  
Vladimir Lyakhovsky

Water levels in three adjacent water wells in the Yarmouk Gorge area have all responded to the 2020 Elazığ Mw 6.8 teleseismic earthquake. Water levels in two aquifers exhibited reciprocal behavior: during the first eight days after the earthquake, water level decreased by 40 cm in the deeper highly confined aquifer, and increased by 90 cm in the shallower less confined aquifer. The recovery of the water levels in both aquifers continued for at least three months. We interpret these observations as reflecting the increase in damage along the fault at the Yarmouk Gorge. Ground shaking increased the damage and permeability of this fault, temporarily connecting the two aquifers, allowing flow from the deep aquifer to the shallow one. Model results showing decreased permeability suggest that the fault healed by one order of magnitude within three days. This is the first documentation of decrease in permeability in a fault zone within such short time scales.


Geology ◽  
2021 ◽  
Author(s):  
Alba M. Rodriguez Padilla ◽  
Michael E. Oskin ◽  
Thomas K. Rockwell ◽  
Irina Delusina ◽  
Drake M. Singleton

Large, multi-fault earthquakes increase the threat of strong ground shaking and reshape the probability of future events across a system of faults. Fault junctions act as conditional barriers, or earthquake gates, that stop most earthquakes but permit junction-spanning events when stress conditions are favorable. Constraining the physical conditions that favor multi-fault earthquakes requires information on the frequency of isolated events versus events that activate faults through the junction. Measuring this frequency is challenging because dating uncertainties limit correlation of paleoseismic events at different faults, requiring a direct approach to measuring rupture through an earthquake gate. We show through documentation and finite-element modeling of secondary fault slip that co-rupture of the San Andreas and San Jacinto faults (California, USA) through the Cajon Pass earthquake gate occurred at least three times in the past 2000 yr, most recently in the historic 1812 CE earthquake. Our models show that gate-breaching events taper steeply and halt abruptly as they transfer slip between faults. Comparison to independent chronologies shows that 20%–23% of earthquakes on the San Andreas and the San Jacinto faults are co-ruptures through Cajon Pass.


2021 ◽  
Author(s):  
Ruth Amey ◽  
John Elliott ◽  
C. Scott Watson ◽  
Richard Walker ◽  
Marco Pagani ◽  
...  

Many cities are built on or near active faults, which pose seismic hazard and risk to the urban population. This risk is exacerbated by city expansion, which may obscure signs of active faulting. Here we estimate the risk to Bishkek city, Kyrgyzstan, due to realistic earthquake scenarios based on historic earthquakes in the region and improved knowledge of the active faulting. We use previous literature and fault mapping, combined with new high-resolution digital elevation models to identify and characterise faults that pose a risk to Bishkek. We then estimate the hazard (ground shaking), damage to residential buildings and losses (economical cost and fatalities) using the Global Earthquake Model OpenQuake engine. We model historical events and hypothetical events on a variety of faults that could plausibly host significant earthquakes. This includes proximal, recognised, faults as well as a fault under folding in the north of the city that we identify using satellite DEMs. We find that potential earthquakes on faults nearest to Bishkek - Issyk Ata, Shamsi Tunduk, Chonkurchak and the northern fault - would cause the most damage to the city. An Mw 7.5 earthquake on the Issyk Ata fault could potentially cause 7,900 ± 2600 completely damaged buildings, a further 16,400 ± 2000 damaged buildings and 2400 ± 1500 fatalities. It is vital to properly identify, characterise and model active faults near cities as modelling the northern fault as a Mw 6.5 instead of Mw 6.0 would result in 37% more completely damaged buildings and 48% more fatalities.


Sign in / Sign up

Export Citation Format

Share Document