scholarly journals Stable Periodic Orbits for a Class of Three Dimensional Competitive Systems

1994 ◽  
Vol 110 (1) ◽  
pp. 143-156 ◽  
Author(s):  
H.R. Zhu ◽  
H.L. Smith
1985 ◽  
Vol 106 ◽  
pp. 543-544
Author(s):  
M. Michalodimitrakis ◽  
Ch. Terzides

The study of orbits of a test particle in the gravitational field of a model barred galaxy is a first step toward the understanding of the origin of the morphological characterstics observed in real barred galaxies. In this paper we confine our attention to the inner rings. Inner rings are a very common characteristic of barred galaxies. They are narrow, round or slightly elongated along the bar (with typical axial ratios from 0.7 to near 1.0), and of the same size as the bar. A first step to test the old hypothesis that inner rings consist of stars trapped near stable periodic orbits would be a study of particle trapping around periodic orbits encircling the bar. Such a study is contained in the work of several authors (Danby 1965, de Vaucouleurs and Freeman 1972, Michalodimitrakis 1975, Contopoulos and Papayannopoulos 1980, Athanassoula et al. 1983). In the above works the stability of periodic orbits was studied with respect to perturbations which lie on the plane of motion z = 0 (planar stability). To ensure the possibility of formation of rings, a study of stability with respect to perturbations perpendicular to the plane of motion (vertical stability) is necessary. In this paper we investigate the properties of periodic orbits which we believe to be relevant for the inner-ring problem using a sufficiently general model for the galaxy and sets of values for the parameters which cover a wide range of different possible cases. We also study the stability, planar and vertical, with respect to large perturbations in order to estimate the extent of particle trapping. A detailed numerical investigation of three-dimensional periodic orbits will be given in a future paper.


2018 ◽  
Vol 612 ◽  
pp. A114 ◽  
Author(s):  
P. A. Patsis ◽  
M. Harsoula

Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known “frown-smile” side-on morphology, is unstable. Aims. Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods. The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results. The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions. In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.


2010 ◽  
Vol 20 (02) ◽  
pp. 437-450 ◽  
Author(s):  
MARCELO MESSIAS ◽  
CRISTIANE NESPOLI ◽  
VANESSA A. BOTTA

The memristor is supposed to be the fourth fundamental electronic element in addition to the well-known resistor, inductor and capacitor. Named as a contraction for memory resistor, its theoretical existence was postulated in 1971 by L. O. Chua, based on symmetrical and logical properties observed in some electronic circuits. On the other hand its physical realization was announced only recently in a paper published on May 2008 issue of Nature by a research team from Hewlett–Packard Company. In this work, we present the bifurcation analysis of two memristor oscillators mathematical models, given by three-dimensional five-parameter piecewise-linear and cubic systems of ordinary differential equations. We show that depending on the parameter values, the systems may present the coexistence of both infinitely many stable periodic orbits and stable equilibrium points. The periodic orbits arise from the change in local stability of equilibrium points on a line of equilibria, for a fixed set of parameter values. This phenomenon is a kind of Hopf bifurcation without parameters. We have numerical evidences that such stable periodic orbits form an invariant surface, which is an attractor of the systems solutions. The results obtained imply that even for a fixed set of parameters the two systems studied may or may not present oscillations, depending on the initial condition considered in the phase space. Moreover, when they exist, the amplitude of the oscillations also depends on the initial conditions.


1995 ◽  
Vol 15 (2) ◽  
pp. 317-331 ◽  
Author(s):  
M. Jiang ◽  
Ya B. Pesin ◽  
R. de la Llave

AbstractWe study the integrability of intermediate distributions for Anosov diffeomorphisms and provide an example of a C∞-Anosov diffeomorphism on a three-dimensional torus whose intermediate stable foliation has leaves that admit only a finite number of derivatives. We also show that this phenomenon is quite abundant. In dimension four or higher this can happen even if the Lyapunov exponents at periodic orbits are constant.


2021 ◽  
Vol 29 (6) ◽  
pp. 863-868
Author(s):  
Danila Shubin ◽  
◽  

The purpose of this study is to establish the topological properties of three-dimensional manifolds which admit Morse – Smale flows without fixed points (non-singular or NMS-flows) and give examples of such manifolds that are not lens spaces. Despite the fact that it is known that any such manifold is a union of circular handles, their topology can be investigated additionally and refined in the case of a small number of orbits. For example, in the case of a flow with two non-twisted (having a tubular neighborhood homeomorphic to a solid torus) orbits, the topology of such manifolds is established exactly: any ambient manifold of an NMS-flow with two orbits is a lens space. Previously, it was believed that all prime manifolds admitting NMS-flows with at most three non-twisted orbits have the same topology. Methods. In this paper, we consider suspensions over Morse – Smale diffeomorphisms with three periodic orbits. These suspensions, in turn, are NMS-flows with three periodic trajectories. Universal coverings of the ambient manifolds of these flows and lens spaces are considered. Results. In this paper, we present a countable set of pairwise distinct simple 3-manifolds admitting NMS-flows with exactly three non-twisted orbits. Conclusion. From the results of this paper it follows that there is a countable set of pairwise distinct three-dimensional manifolds other than lens spaces, which refutes the previously published result that any simple orientable manifold admitting an NMS-flow with at most three orbits is lens space.


Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 65 ◽  
Author(s):  
Nicoletta Patrizi ◽  
Valentina Niccolucci ◽  
Riccardo Pulselli ◽  
Elena Neri ◽  
Simone Bastianoni

One of the main goals of any (sustainability) indicator should be the communication of a clear, unambiguous, and simplified message about the status of the analyzed system. The selected indicator is expected to declare explicitly how its numerical value depicts a situation, for example, positive or negative, sustainable or unsustainable, especially when a comparison among similar or competitive systems is performed. This aspect should be a primary and discriminating issue when the selection of a set of opportune indicators is operated. The Ecological Footprint (EF) has become one of the most popular and widely used sustainability indicators. It is a resource accounting method with an area based metric in which the units of measure are global hectares or hectares with world average bio-productivity. Its main goal is to underline the link between the (un)sustainability level of a product, a system, an activity or a population life style, with the land demand for providing goods, energy, and ecological services needed to sustain that product, system, activity, or population. Therefore, the traditional rationale behind the message of EF is: the larger EF value, the larger environmental impact in terms of resources use, the lower position in the sustainability rank. The aim of this paper was to investigate if this rationale is everywhere opportune and unambiguous, or if sometimes its use requires paying a special attention. Then, a three-dimensional modification of the classical EF framework for the sustainability evaluation of a product has been proposed following a previous work by Niccolucci and co-authors (2009). Finally, the potentialities of the model have been tested by using a case study from the agricultural context.


AIAA Journal ◽  
1968 ◽  
Vol 6 (7) ◽  
pp. 1301-1304 ◽  
Author(s):  
RONALD KOLENKIEWICZ ◽  
LLOYD CARPENTER

Sign in / Sign up

Export Citation Format

Share Document