Stability analysis of a food chain model consisting of two competitive preys and one predator

2015 ◽  
Vol 82 (3) ◽  
pp. 1303-1316 ◽  
Author(s):  
Nijamuddin Ali ◽  
Santabrata Chakravarty
2018 ◽  
Vol 28 (01) ◽  
pp. 1850009 ◽  
Author(s):  
Pijush Panday ◽  
Nikhil Pal ◽  
Sudip Samanta ◽  
Joydev Chattopadhyay

In the present paper, we investigate the impact of fear in a tri-trophic food chain model. We propose a three-species food chain model, where the growth rate of middle predator is reduced due to the cost of fear of top predator, and the growth rate of prey is suppressed due to the cost of fear of middle predator. Mathematical properties such as equilibrium analysis, stability analysis, bifurcation analysis and persistence have been investigated. We also describe the global stability analysis of the equilibrium points. Our numerical simulations reveal that cost of fear in basal prey may exhibit bistability by producing unstable limit cycles, however, fear in middle predator can replace unstable limit cycles by a stable limit cycle or a stable interior equilibrium. We observe that fear can stabilize the system from chaos to stable focus through the period-halving phenomenon. We conclude that chaotic dynamics can be controlled by the fear factors. We apply basic tools of nonlinear dynamics such as Poincaré section and maximum Lyapunov exponent to identify the chaotic behavior of the system.


2014 ◽  
Vol 07 (02) ◽  
pp. 1450013 ◽  
Author(s):  
Canrong Tian ◽  
Zhi Ling ◽  
Zhigui Lin

This paper deals with the stability analysis to a three-species food chain model with cross-diffusion, the results of which show that there is no Turing instability but cross-diffusion makes the model instability possible. We then show that the spatial patterns are spotted patterns by using numerical simulations. In order to understand why the spatial patterns happen, the existence of the nonhomogeneous steady states is investigated. Finally, using the Leray–Schauder theory, we demonstrate that cross-diffusion creates nonhomogeneous stationary patterns.


2020 ◽  
Vol 1591 ◽  
pp. 012082
Author(s):  
Hiba Abdullah Ibrahim ◽  
Raid Kamel Naji

Sign in / Sign up

Export Citation Format

Share Document