group defense
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 28)

H-INDEX

14
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Jorge Arroyo-Esqu ◽  
Alan Hastings ◽  
Marissa L. Baskett

Abstract Integrodifference equations are a discrete time spatially explicit model that describes dispersal of ecological populations through space. This framework is useful to study spread dynamics of organisms and how ecological interactions can affect their spread. When studying interactions such as consumption, dispersal rates might vary with life cycle stage, such as cases with dispersive juveniles and sessile adults. In the non-dispersive stage, resources may engage in group defense to protect themselves from consumption. These local nondispersive interactions may limit the number of dispersing recruits that are produced and therefore affect how fast populations can spread. We present a spatial consumer-resource system using an integrodifference framework with limited movement of their adult stages and group defense mechanisms in the resource population. We model group defense using a Type IV Holling functional response, which limits survival of adult resource population and enhances juvenile consumers production. We find that high mortality levels for sessile adults can destabilize resource at carrying capacity. Furthermore, we find that at high resource densities, group defense leads to a slower local growth of resource in newly invaded regions due to intraspecific competition outweighing the effect of consumption on resource growth.


2021 ◽  
Vol 53 (2) ◽  
pp. 261-285
Author(s):  
Reuben Iortyer Gweryina ◽  
Emilian Chinwendu Madubueze ◽  
Simon James Ogaji

In this study, we applied the principle of a competitive predator-prey system to propose a prey-predator-like model of xenophobia in Africa. The boundedness of the solution, the existence and stability of equilibrium states of the xenophobic model are discussed accordingly. As a special case, the coexistence state was found to be locally and globally stable based on the parametric conditions of effective group defense and anti-xenophobic policy implementation. The system was further analyzed by Sotomayor’s theory to show that each equilibrium point bifurcates transcritically. However, numerical proof showed period-doubling bifurcation, which makes the xenophobic situation more chaotic in Africa. Further numerical simulations support the analytical results with the view that tolerance, group defense and anti-xenophobic policies are critical parameters for the coexistence of foreigners and xenophobes.


2021 ◽  
Author(s):  
Robert M. Cooper ◽  
Jeff Hasty

SummaryCRISPR-Cas systems present an evolutionary tradeoff: does defense against phages and other parasitic DNA also prevent cells from acquiring potentially helpful new genes? Genomic analyses of this conundrum have arrived at often contradictory conclusions. Meanwhile, experimental studies have focused mainly on phages, conjugation, or artificial transformation, but less work has examined natural competence, a major driver of evolution and antibiotic resistance. Here, we use Acinetobacter baylyi, which combines high natural competence with a functional CRISPR-Cas system, to experimentally probe the interactions between CRISPR-Cas and natural competence. In these bacteria, the endogenous CRISPR array largely allows natural transformation by targeted DNA. However, CRISPR-Cas then kills the newly autoimmune cells in a form of programmed cell death. CRISPR-Cas often allows self-targeting cells to form colonies, albeit with fitness costs. Thus CRISPR-Cas appears to block natural transformation in a process more akin to altruistic group defense than an individual immune system.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Firas Hussean Maghool ◽  
Raid Kamel Naji

The avoidance strategy of prey to predation and the predation strategy for predators are important topics in evolutionary biology. Both prey and predators adjust their behaviors in order to obtain the maximal benefits and to raise their biomass for each. Therefore, this paper is aimed at studying the impact of prey’s fear and group defense against predation on the dynamics of the food-web model. Consequently, in this paper, a mathematical model that describes a tritrophic Leslie-Gower food-web system is formulated. Sokol-Howell type of function response is adapted to describe the predation process due to the prey’s group defensive capability. The effects of fear due to the predation process are considered in the first two levels. It is assumed that the generalist predator grows logistically using the Leslie-Gower type of growth function. All the solution properties of the model are studied. Local dynamics behaviors are investigated. The basin of attraction for each equilibrium is determined using the Lyapunov function. The conditions of persistence of the model are specified. The study of local bifurcation in the model is done. Numerical simulations are implemented to show the obtained results. It is watched that the system is wealthy in its dynamics including chaos. The fear factor works as a stabilizing factor in the system up to a specific level; otherwise, it leads to the extinction of the predator. However, increasing the prey’s group defense leads to extinction in predator species.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150154
Author(s):  
Robert E. Kooij ◽  
André Zegeling

For a family of two-dimensional predator–prey models of Gause type, we investigate the simultaneous occurrence of a center singularity and a limit cycle. The family is characterized by the fact that the functional response is nonanalytical and exhibits group defense. We prove the existence and uniqueness of the limit cycle using a new theorem for Liénard systems. The new theorem gives conditions for the uniqueness of a limit cycle which surrounds a period annulus. The results of this paper provide a mechanism for studying the global behavior of solutions to Gause systems through bifurcation of an integrable system which contains a center and a limit cycle.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150158
Author(s):  
Yong Ye ◽  
Yi Zhao

In this paper, we establish a predator–prey model with focus on the Allee effect and prey group defense. The positivity and boundedness of the model, existence of equilibrium point, and stability change caused by Allee effect are studied. Bifurcation (transcritical bifurcation, Hopf bifurcation) analysis is discussed, and the direction of Hopf bifurcation is determined by calculating the first Lyapunov number. Then we introduce delay into the original model and consider the influence of delay on the stability of the model. By selecting delay as the bifurcation parameter, we obtain the existence conditions of Hopf bifurcation and the direction of Hopf bifurcation. Finally, we verify the theoretical analysis by numerical simulation. Considering both the Allee effect and the prey group defense, the dynamic behavior near the origin becomes more complex than only considering Allee effect or prey group defense in the model. Allee effect can bring the risk of extinction and the change of stability, and the delay effect can make the stable coexistence equilibrium unstable and lead to periodic oscillation.


2021 ◽  
pp. 110846
Author(s):  
Pijush Panday ◽  
Nikhil Pal ◽  
Sudip Samanta ◽  
Piotr Tryjanowski ◽  
Joydev Chattopadhyay

Sign in / Sign up

Export Citation Format

Share Document