Stationary response probability density of nonlinear random vibrating systems: a data-driven method

2020 ◽  
Vol 100 (3) ◽  
pp. 2337-2352
Author(s):  
Yanping Tian ◽  
Yong Wang ◽  
Hanqing Jiang ◽  
Zhilong Huang ◽  
Isaac Elishakoff ◽  
...  
2012 ◽  
Vol 57 (21) ◽  
pp. 6827-6848 ◽  
Author(s):  
Rutao Yao ◽  
Ranjith M Ramachandra ◽  
Neeraj Mahajan ◽  
Vinay Rathod ◽  
Noel Gunasekar ◽  
...  

2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Y. J. Wu ◽  
W. Q. Zhu

Physical and engineering systems are often subjected to combined harmonic and random excitations. The random excitation is often modeled as Gaussian white noise for mathematical tractability. However, in practice, the random excitation is nonwhite. This paper investigates the stationary response probability density of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations. By using generalized harmonic functions, a new stochastic averaging procedure for estimating stationary response probability density of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations is developed. The damping can be linear and (or) nonlinear and the excitations can be external and (or) parametric. After stochastic averaging, the system state is represented by two-dimensional time-homogeneous diffusive Markov processes. The method of reduced Fokker–Planck–Kolmogorov equation is used to investigate the stationary response of the vibration system. A nonlinearly damped Duffing oscillator is taken as an example to show the application and validity of the method. In the case of primary external resonance, based on the stationary joint probability density of amplitude and phase difference, the stochastic jump of the Duffing oscillator and P-bifurcation as the system parameters change are examined for the first time. The agreement between the analytical results and those from Monte Carlo simulation of original system shows that the proposed procedure works quite well.


Author(s):  
Alberto Di Matteo ◽  
Antonina Pirrotta

In this paper, the probabilistic response of nonlinear systems driven by alpha-stable Lévy white noises is considered. The path integral solution is adopted for determining the evolution of the probability density function of nonlinear oscillators. Specifically, based on the properties of alpha-stable random variables and processes, the path integral solution is extended to deal with Lévy white noises input with any value of the stability index alpha. It is shown that at the limit when the time increments tend to zero, the Einstein–Smoluchowsky equation, governing the evolution of the response probability density function, is fully restored. Application to linear and nonlinear systems under different values of alpha is reported. Comparisons with pertinent Monte Carlo simulation data and analytical solutions (when available) demonstrate the accuracy of the results.


Author(s):  
A. K. Banik ◽  
T. K. Datta

The stationary response and asymptotic stability in probability of an articulated tower under random wave excitation are investigated. The articulated tower is modelled as a SDOF system having stiffness nonlinearity, damping nonlinearity and parametric excitation. Using a stochastic averaging procedure and Fokker-Plank-Kolomogorov equation (FPK), the probability density function of the stationary solution is obtained for random sea state represented by a P-M sea spectrum. The method involves a Van-Der-Pol transformation of the nonlinear equation of motion to convert it to the Ito’s stochastic differential equation with averaged drift and diffusion coefficients. The asymptotic stability in probability of the system is investigated by obtaining the averaged Ito’s equation for the Hamiltonian of the system. The asymptotic stability is examined approximately by investigating the asymptotic behaviour of the diffusion process Y(t) at its two boundaries Y = 0 and ∞. As an illustrative example, an articulated tower in a sea depth of 150 m is considered. The tower consists of hollow cylinder of varying diameter along the height, providing the required buoyancy of the system. Wave forces on the structure are calculated using Morrison’s equation. The stochastic response and the stability conditions are obtained for a sea state represented by P-M spectrum with 16m significant wave height. The results of the study indicate that the probability density of the stationary response obtained by the stochastic averaging procedure is in very good agreement with that obtained from digital simulation. Further, the articulated tower is found to be asymptotically stable under the parametric excitation arising due to hydrodynamic damping.


Sign in / Sign up

Export Citation Format

Share Document