Stochastic Response and Stability Analysis of Single Leg Articulated Tower

Author(s):  
A. K. Banik ◽  
T. K. Datta

The stationary response and asymptotic stability in probability of an articulated tower under random wave excitation are investigated. The articulated tower is modelled as a SDOF system having stiffness nonlinearity, damping nonlinearity and parametric excitation. Using a stochastic averaging procedure and Fokker-Plank-Kolomogorov equation (FPK), the probability density function of the stationary solution is obtained for random sea state represented by a P-M sea spectrum. The method involves a Van-Der-Pol transformation of the nonlinear equation of motion to convert it to the Ito’s stochastic differential equation with averaged drift and diffusion coefficients. The asymptotic stability in probability of the system is investigated by obtaining the averaged Ito’s equation for the Hamiltonian of the system. The asymptotic stability is examined approximately by investigating the asymptotic behaviour of the diffusion process Y(t) at its two boundaries Y = 0 and ∞. As an illustrative example, an articulated tower in a sea depth of 150 m is considered. The tower consists of hollow cylinder of varying diameter along the height, providing the required buoyancy of the system. Wave forces on the structure are calculated using Morrison’s equation. The stochastic response and the stability conditions are obtained for a sea state represented by P-M spectrum with 16m significant wave height. The results of the study indicate that the probability density of the stationary response obtained by the stochastic averaging procedure is in very good agreement with that obtained from digital simulation. Further, the articulated tower is found to be asymptotically stable under the parametric excitation arising due to hydrodynamic damping.

Author(s):  
A. K. Banik ◽  
T. K. Datta

The stochastic response and stability of a two-point mooring system are investigated for random sea state represented by the P-M sea spectrum. The two point mooring system is modeled as a SDOF system having only stiffness nonlinearity; drag nonlinearity is represented by an equivalent linear damping. Since no parametric excitation exists and only the linear damping is assumed to be present in the system, only a local stability analysis is sufficient for the system. This is performed using a perturbation technique and the Infante’s method. The analysis requires the mean square response of the system, which may be obtained in various ways. In the present study, the method using van-der-Pol transformation and F-P-K equation is used to obtain the probability density function of the response under the random wave forces. From the moment of the probability density function, the mean square response is obtained. Stability of the system is represented by an inequality condition expressed as a function of some important parameters. A two point mooring system is analysed as an illustrative example for a water depth of 141.5 m and a sea state represented by PM spectrum with 16 m significant height. It is shown that for certain combinations of parameter values, stability of two point mooring system may not be achieved.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Y. J. Wu ◽  
W. Q. Zhu

Physical and engineering systems are often subjected to combined harmonic and random excitations. The random excitation is often modeled as Gaussian white noise for mathematical tractability. However, in practice, the random excitation is nonwhite. This paper investigates the stationary response probability density of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations. By using generalized harmonic functions, a new stochastic averaging procedure for estimating stationary response probability density of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations is developed. The damping can be linear and (or) nonlinear and the excitations can be external and (or) parametric. After stochastic averaging, the system state is represented by two-dimensional time-homogeneous diffusive Markov processes. The method of reduced Fokker–Planck–Kolmogorov equation is used to investigate the stationary response of the vibration system. A nonlinearly damped Duffing oscillator is taken as an example to show the application and validity of the method. In the case of primary external resonance, based on the stationary joint probability density of amplitude and phase difference, the stochastic jump of the Duffing oscillator and P-bifurcation as the system parameters change are examined for the first time. The agreement between the analytical results and those from Monte Carlo simulation of original system shows that the proposed procedure works quite well.


2013 ◽  
Vol 765-767 ◽  
pp. 709-712 ◽  
Author(s):  
De Zhi Liu ◽  
Wei Qun Wang

In the paper, we are concerned with the partial asymptotic stochastic stability (stability in probability) of stochastic differential delay equations with Markovian switching (SDDEwMSs), the sufficient conditions for partial asymptotic stability in probability have been given and we have generalized some results of Sharov and Ignatyev to cover a class of much more general SDDEwMSs.


Sign in / Sign up

Export Citation Format

Share Document