fractional moments
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 28)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
pp. 18-27
Author(s):  
A. L. Morozov

Induction Motors (IM) play a key role in modern industry, so the condition monitoring systems are becoming increasingly relevant. Commercial monitoring systems are usually based on the measurement of IM’s vibrations and the further processing of the measured vibration signals. For those purposes the embedded systems (such as microcontrollers and inexpensive processors) are used. Embedded systems have limited resources, so data processing algorithms should have low computational complexity and require little memory. In this paper, the wellknown methods of processing vibration signals for fault diagnosis of the IM are considered and their main advantages and disadvantages for the implementation in embedded systems are highlighted. The previously proposed method based on a combination of the fast Fourier transform and the statistics of the fractional moments is optimized for vibration signal processing and implementation in embedded systems. The efficiency of diagnosis of such faults as eccentricity and a broke rotor bar, using the proposed method, is verified on the radial vertical vibrations measurements of the real motors under different constant load levels: no load, 50 % of the rated load, 75% of the rated load. The results show that this approach allows accurately diagnose the considered faults independently from the load level.


2021 ◽  
Author(s):  
A. L. Morozov ◽  
R. R. Nigmatullin ◽  
G. Agrusti ◽  
P. Lino ◽  
G. Maione ◽  
...  

Author(s):  
Mahdieh Gholizadeh ◽  
Mohammad Hossein Gholizadeh ◽  
Hossein Ghayoumi Zadeh ◽  
Mostafa Danaeian

Background: This paper presents a method to improve medical radiography images based on the use of statistical signal moments. Methods: In this paper, the image with noise is considered as a statistical signal, and the noise reduction is performed by using fractional moments. The fractional moment’s method, on the one hand, has a speed similar to the moment method, and, on the other hand, has not the limitations of the moment method, which sometimes achieves inaccurate results. The proposed method is ultimately examined on radiographic images (CT). Results: The information obtained from the fractional moments of the received signal is a criterion to estimate the noise parameters and the gray scales of the main image. One of the limitations of the proposed method is that the image should be sent several times, because in statistical discussions, we cannot make a decision with only one sample. The error of the proposed noise reduction method in terms of the number of times the original image was sent, is about 0.009, 0.0009, 0.0002, and 0.0001, for n = 3, n = 6, n = 9 and n = 14, respectively. Conclusion: The simulation results show that the proposed method is more effective than the most conventional noise reduction methods, both in the low signal to noise ratio and in terms of image quality, and is more powerful than the most notable noise removal methods in restoring the subtleties and image details.


Sign in / Sign up

Export Citation Format

Share Document