The integrable Boussinesq equation and it’s breather, lump and soliton solutions

Author(s):  
Sachin Kumar ◽  
Sandeep Malik ◽  
Hadi Rezazadeh ◽  
Lanre Akinyemi
2012 ◽  
Vol 219 (8) ◽  
pp. 3414-3419 ◽  
Author(s):  
A.S. Abdel Rady ◽  
E.S. Osman ◽  
Mohammed Khalfallah

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 341 ◽  
Author(s):  
Juan Luis García Guirao ◽  
Haci Mehmet Baskonus ◽  
Ajay Kumar

This paper applies the sine-Gordon expansion method to the extended nonlinear (2+1)-dimensional Boussinesq equation. Many new dark, complex and mixed dark-bright soliton solutions of the governing model are derived. Moreover, for better understanding of the results, 2D, 3D and contour graphs under the strain conditions and the suitable values of parameters are also plotted.


2012 ◽  
Vol 26 (07) ◽  
pp. 1250062 ◽  
Author(s):  
XIAO-LING GAI ◽  
YI-TIAN GAO ◽  
XIN YU ◽  
ZHI-YUAN SUN

Generalized (3+1)-dimensional Boussinesq equation is investigated in this paper. Through the dependent variable transformation and symbolic computation, the one- and two-soliton solutions are obtained. With the one-soliton solution, the coefficient effects in the soliton propagation process are investigated. Through analyzing the two-soliton solution, two kinds of two-soliton interactions are presented: (i) Two solitons merge into a bigger one whose amplitude increases but does not exceed the sum of the two at the moment of the collision; (ii) Two solitons can pass through each other, and their shapes keep unchanged with a phase shift after the separation. In addition, two kinds of analytic solutions are discussed: (i) "Amplitudes" of the two analytic solutions immediately turn to negative (positive) infinity after the "collision"; (ii) Two analytic solutions are fused into a higher peak (valley) at the moment of "collision", whose "amplitudes" change to negative (positive) infinity after the separation.


2015 ◽  
Vol 70 (8) ◽  
pp. 669-672 ◽  
Author(s):  
Ozkan Guner ◽  
Sait San ◽  
Ahmet Bekir ◽  
Emrullah Yaşar

AbstractIn this work, we consider the (1+1)-dimensional modified improved Boussinesq (IMBq) equation. As the considered equation is of evolution type, no recourse to a Lagrangian formulation is made. However, we showed that by utilising the partial Lagrangian method and multiplier method, one can construct a number of local and nonlocal conservation laws for the IMBq equation. In addition, by using a solitary wave ansatz method, we obtained exact bright soliton solutions for this equation. The parameters of the soliton envelope (amplitude, widths, velocity) were obtained as function of the dependent model coefficients. Note that, it is always useful and desirable to construct exact solutions especially soliton-type envelope for the understanding of most nonlinear physical phenomena.


Sign in / Sign up

Export Citation Format

Share Document