scholarly journals Lévy noise-induced self-induced stochastic resonance in a memristive neuron

Author(s):  
Marius E. Yamakou ◽  
Tat Dat Tran

AbstractAll previous studies on self-induced stochastic resonance (SISR) in neural systems have only considered the idealized Gaussian white noise. Moreover, these studies have ignored one electrophysiological aspect of the nerve cell: its memristive properties. In this paper, first, we show that in the excitable regime, the asymptotic matching of the deterministic timescale and mean escape timescale of an $$\alpha $$ α -stable Lévy process (with value increasing as a power $$\sigma ^{-\alpha }$$ σ - α of the noise amplitude $$\sigma $$ σ , unlike the mean escape timescale of a Gaussian process which increases as in Kramers’ law) can also induce a strong SISR. In addition, it is shown that the degree of SISR induced by Lévy noise is not always higher than that of Gaussian noise. Second, we show that, for both types of noises, the two memristive properties of the neuron have opposite effects on the degree of SISR: the stronger the feedback gain parameter that controls the modulation of the membrane potential with the magnetic flux and the weaker the feedback gain parameter that controls the saturation of the magnetic flux, the higher the degree of SISR. Finally, we show that, for both types of noises, the degree of SISR in the memristive neuron is always higher than in the non-memristive neuron. Our results could guide hardware implementations of neuromorphic silicon circuits operating in noisy regimes.

2021 ◽  
Author(s):  
Marius E. Yamakou ◽  
Tat Dat Tran

Abstract Self-induced stochastic resonance (SISR) is a subtle resonance mechanism requiring a nontrivial scaling limit between the stochastic and the deterministic timescales of an excitable system, leading to the emergence of a limit cycle behavior which is absent without noise. All previous studies on SISR in neural systems have only considered the idealized Gaussian white noise. Moreover, these studies have ignored one electrophysiological aspect of the nerve cell: its memristive properties. In this paper, first, we show that in the excitable regime, the asymptotic matching of the mean escape timescale of an α-stable Lévy process (with value increasing as a power σ-α of the noise amplitude σ, unlike the mean escape timescale of a Gaussian process with the value increasing as in Kramers' law) and the deterministic timescale (controlled by the singular parameter) can also induce a strong SISR. In addition, it is shown that the degree of SISR induced by Lévy noise is not always higher than that of Gaussian noise. Second, we show that, for both types of noises, the two memristive properties of the neuron have opposite effects on the degree of SISR: the stronger the feedback gain parameter that controls the modulation of the membrane potential with the magnetic flux and the weaker the feedback gain parameter that controls the saturation of the magnetic flux, the higher the degree of SISR. Finally, we show that, for both types of noises, the degree of SISR in the memristive neuron is always higher than in the non-memristive neuron. Our results could find applications in designing neuromorphic circuits operating in noisy regimes.


2020 ◽  
Vol 34 (19) ◽  
pp. 2050185
Author(s):  
Dongxi Li ◽  
Shuling Song ◽  
Ni Zhang

This paper primarily investigates the inverse stochastic resonance (ISR) of neuron network driven by Lévy noise with electrical autapse and chemical autapse, respectively. Firstly, the discharge of Hodgkin–Huxley (HH) neuron network under different noise parameters, autapse parameters and network coupling strength is shown. Then, the variation of average firing rate with Lévy noise in the case of electrical autapse and chemical autapse is presented. We find that there exists a minimum value of the average firing rate curve caused by stability index and noise intensity of Lévy noise across the whole network, which is the phenomenon of ISR. With the increase of autaptic intensity and coupling strength, the ISR inhibitory effect of neuron discharge is weakened. In addition, with the increase of coupling strength, the neuron discharge of neural network is more intense and regular. As a consequence, our work suggests that autaptic intensity and coupling efficient of neuronal network can regulate the neuronal firing activities and suppress the effect of ISR, and Lévy noise can induce ISR phenomenon in Newman–Watts neuronal network.


2007 ◽  
Vol 40 (26) ◽  
pp. 7175-7185 ◽  
Author(s):  
Lingzao Zeng ◽  
Ronghao Bao ◽  
Bohou Xu

2012 ◽  
Vol 26 (23) ◽  
pp. 1250149 ◽  
Author(s):  
LILI JIANG ◽  
XIAOQIN LUO ◽  
DAN WU ◽  
SHIQUN ZHU

The dynamical behavior of tumor growth model driven by Lévy noise terms is investigated. For α = 2 and β = 0, the process driven by white Lévy noise approach to the standard Gaussian white noise can be viewed in the analysis of the steady-state probability distribution and the mean first-passage time. When β → 0, the index α would increase the mean first-passage time as scale σ < 0 and shorten the mean first-passage time as scale σ > 0. A nonzero β parameter induces α to decrease the mean first-passage time. Thus analyzing the initial situation of tumor is very important to obtain more therapy time.


Sign in / Sign up

Export Citation Format

Share Document