mean first passage time
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 35)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Xiaoyan Li ◽  
Yu Sun

In this paper, we introduce a class of double-weighted polygon networks with two different meanings of weighted factors [Formula: see text] and [Formula: see text], which represent path-difficulty and path-length, respectively, based on actual traffic networks. Picking an arbitrary node from the hub nodes set as the trap node, and the double-weighted polygon networks are divided into [Formula: see text] blocks by combining with the iterative method. According to biased random walks, the calculation expression of average receiving time (ART) of any polygon networks is given by using the intermediate quantity the mean first-passage time (MFPT), which is applicable to any [Formula: see text] ([Formula: see text]) polygon networks. What is more, we display the specific calculation process and results of ART of the double-weighted quadrilateral networks, indicating that ART grows exponentially with respect to the networks order and the exponent is [Formula: see text] which grows with the product of [Formula: see text]. When [Formula: see text] increases, ART increases linearly ([Formula: see text]) or sublinearly ([Formula: see text]) with the size of networks, and the smaller value of [Formula: see text], the higher transportation efficiency.


Author(s):  
Tian Zhou ◽  
Pengbo Xu ◽  
Weihua Deng

Abstract Almost all the media the particles move in are non-static, one of which is the most common expanding or contracting (by a scale factor) non-static medium discussed in this paper. Depending on the expected resolution of the studied dynamics and the amplitude of the displacement caused by the non-static media, sometimes the non-static behaviors of the media can not be ignored. In this paper, we build the model describing L\'evy walks in one-dimension uniformly non-static media, where the physical and comoving coordinates are connected by scale factor. We derive the equation governing the probability density function of the position of the particles in comoving coordinate. Using the Hermite orthogonal polynomial expansions, some statistical properties are obtained, such as mean squared displacements (MSDs) in both coordinates and kurtosis. For some representative non-static media and L\'{e}vy walks, the asymptotic behaviors of MSDs in both coordinates are analyzed in detail. The stationary distributions and mean first passage time for some cases are also discussed through numerical simulations.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Silvia Bartolucci ◽  
Fabio Caccioli ◽  
Francesco Caravelli ◽  
Pierpaolo Vivo

We derive an approximate but explicit formula for the Mean First Passage Time of a random walker between a source and a target node of a directed and weighted network. The formula does not require any matrix inversion, and it takes as only input the transition probabilities into the target node. It is derived from the calculation of the average resolvent of a deformed ensemble of random sub-stochastic matrices H=\langle H\rangle +\delta HH=⟨H⟩+δH, with \langle H\rangle⟨H⟩ rank-11 and non-negative. The accuracy of the formula depends on the spectral gap of the reduced transition matrix, and it is tested numerically on several instances of (weighted) networks away from the high sparsity regime, with an excellent agreement.


Author(s):  
Nicholas Mwilu Mutothya ◽  
Yong Xu ◽  
Yongge Li ◽  
Ralf Metzler ◽  
Nicholas Muthama Mutua

Abstract We study the first passage dynamics for a diffusing particle experiencing a spatially varying diffusion coefficient while driven by correlated additive Gaussian white noise and multiplicative coloured non-Gaussian noise. We consider three functional forms for position dependence of the diffusion coefficient: power-law, exponential, and logarithmic. The coloured non-Gaussian noise is distributed according to Tsallis' $q$-distribution. Tracks of the non-Markovian systems are numerically simulated by using the fourth-order Runge-Kutta algorithm and the first passage times are recorded. The first passage time density is determined along with the mean first passage time. Effects of the noise intensity and self-correlation of the multiplicative noise, the intensity of the additive noise, the cross-correlation strength, and the non-extensivity parameter on the mean first passage time are discussed.


2021 ◽  
Vol 2021 (11) ◽  
pp. 113203
Author(s):  
F Faisant ◽  
B Besga ◽  
A Petrosyan ◽  
S Ciliberto ◽  
Satya N Majumdar

Abstract We experimentally, numerically and theoretically study the optimal mean time needed by a Brownian particle, freely diffusing either in one or two dimensions, to reach, within a tolerance radius R tol, a target at a distance L from an initial position in the presence of resetting. The reset position is Gaussian distributed with width σ. We derived and tested two resetting protocols, one with a periodic and one with random (Poissonian) resetting times. We computed and measured the full first-passage probability distribution that displays spectacular spikes immediately after each resetting time for close targets. We study the optimal mean first-passage time as a function of the resetting period/rate for different target distances (values of the ratios b = L/σ) and target size (a = R tol/L). We find an interesting phase transition at a critical value of b, both in one and two dimensions. The details of the calculations as well as the experimental setup and limitations are discussed.


2021 ◽  
Vol 5 (4) ◽  
pp. 184
Author(s):  
Long Gao ◽  
Junhao Peng ◽  
Chunming Tang

First-passage processes on fractals are of particular importance since fractals are ubiquitous in nature, and first-passage processes are fundamental dynamic processes that have wide applications. The global mean first-passage time (GMFPT), which is the expected time for a walker (or a particle) to first reach the given target site while the probability distribution for the position of target site is uniform, is a useful indicator for the transport efficiency of the whole network. The smaller the GMFPT, the faster the mass is transported on the network. In this work, we consider the first-passage process on a class of fractal scale-free trees (FSTs), aiming at speeding up the first-passage process on the FSTs. Firstly, we analyze the global mean first-passage time (GMFPT) for unbiased random walks on the FSTs. Then we introduce proper weight, dominated by a parameter w(w>0), to each edge of the FSTs and construct a biased random walks strategy based on these weights. Next, we analytically evaluated the GMFPT for biased random walks on the FSTs. The exact results of the GMFPT for unbiased and biased random walks on the FSTs are both obtained. Finally, we view the GMFPT as a function of parameter w and find the point where the GMFPT achieves its minimum. The exact result is obtained and a way to optimize and speed up the first-passage process on the FSTs is presented.


2021 ◽  
Vol 63 ◽  
pp. 1-22
Author(s):  
Sarafa Iyaniwura ◽  
Michael Ward

A hybrid asymptotic-numerical method is developed to approximate the mean first passage time (MFPT) and the splitting probability for a Brownian particle in a bounded two-dimensional (2D) domain that contains absorbing disks, referred to as "traps”, of asymptotically small radii. In contrast to previous studies that required traps to be spatially well separated, we show how to readily incorporate the effect of a cluster of closely spaced traps by adapting a recently formulated least-squares approach in order to numerically solve certain local problems for the Laplacian near the cluster. We also provide new asymptotic formulae for the MFPT in 2D spatially periodic domains where a trap cluster is centred at the lattice points of an oblique Bravais lattice. Over all such lattices with fixed area for the primitive cell, and for each specific trap set, the average MFPT is smallest for a hexagonal lattice of traps. doi:10.1017/S1446181121000018


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaomin Wang ◽  
Jing Su ◽  
Fei Ma ◽  
Bing Yao

The mean first-passage time of random walks on a network has been extensively applied in the theory and practice of statistical physics, and its application effects depend on the behavior of first-passage time. Here, we firstly define a graphic operation, namely, rectangle operation, for generating a scale-free network. In this paper, we study the topological structures of our network obtained from the rectangle operation, including degree distribution, clustering coefficient, and diameter. And then, we also consider the characteristic quantities related to the network, including Kirchhoff index and mean first-passage time, where these characteristic quantities can not only be used to evaluate the properties of our network, but also have remarkable applications in science and engineering.


Sign in / Sign up

Export Citation Format

Share Document