scholarly journals A new stable collocation method for solving a class of nonlinear fractional delay differential equations

2020 ◽  
Vol 85 (4) ◽  
pp. 1123-1153
Author(s):  
Lei Shi ◽  
Zhong Chen ◽  
Xiaohua Ding ◽  
Qiang Ma

AbstractIn this paper, a stable collocation method for solving the nonlinear fractional delay differential equations is proposed by constructing a new set of multiscale orthonormal bases of $W^{1}_{2,0}$ W 2 , 0 1 . Error estimations of approximate solutions are given and the highest convergence order can reach four in the sense of the norm of $W_{2,0}^{1}$ W 2 , 0 1 . To overcome the nonlinear condition, we make use of Newton’s method to transform the nonlinear equation into a sequence of linear equations. For the linear equations, a rigorous theory is given for obtaining their ε-approximate solutions by solving a system of equations or searching the minimum value. Stability analysis is also obtained. Some examples are discussed to illustrate the efficiency of the proposed method.

Author(s):  
Waleed M. Abd-Elhameed ◽  
José A. Tenreiro Machado ◽  
Youssri H. Youssri

Abstract This paper presents an explicit formula that approximates the fractional derivatives of Chebyshev polynomials of the first-kind in the Caputo sense. The new expression is given in terms of a terminating hypergeometric function of the type 4 F 3(1). The integer derivatives of Chebyshev polynomials of the first-kind are deduced as a special case of the fractional ones. The formula will be applied for obtaining a spectral solution of a certain type of fractional delay differential equations with the aid of an explicit Chebyshev tau method. The shifted Chebyshev polynomials of the first-kind are selected as basis functions and the spectral tau method is employed for obtaining the desired approximate solutions. The convergence and error analysis are discussed. Numerical results are presented illustrating the efficiency and accuracy of the proposed algorithm.


2021 ◽  
pp. 3679-3689
Author(s):  
Eman Mohmmed Namah

     The idea of the paper is to consolidate Mahgoub transform and variational iteration method (MTVIM) to solve fractional delay differential equations (FDDEs). The fractional derivative was in Caputo sense. The convergences of approximate solutions to exact solution were quick. The MTVIM is characterized by ease of application in various problems and is capable of simplifying the size of computational operations.  Several non-linear (FDDEs) were analytically solved as illustrative examples and the results were compared numerically. The results for accentuating the efficiency, performance, and activity of suggested method were shown by comparisons with Adomian Decomposition Method (ADM), Laplace Adomian Decomposition Method (LADM), Modified Adomian Decomposition Method (MADM) and Homotopy Analysis Method (HAM).


2012 ◽  
Vol 500 ◽  
pp. 591-595
Author(s):  
Xiang Mei Zhang ◽  
An Ping Xu ◽  
Xian Zhou Guo

The paper deals with the numerical stability analysis of fractional delay differential equations with non-smooth coefficients using the Lagrange collocation method. In this paper, based on the Grunwald-Letnikov fractional derivatives, we discuss the approximation of fractional differentiation by the Lagrange polynomial. Then we study the numerical stability of the fractional delay differential equations. Finally, the stability of the delayed Mathieu equation of fractional order is studied and examined by Lagrange collocation method.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Sign in / Sign up

Export Citation Format

Share Document