scholarly journals Early Warning Systems for Currency Crises with Real-Time Data

2019 ◽  
Vol 30 (4) ◽  
pp. 813-835 ◽  
Author(s):  
Tjeerd M. Boonman ◽  
Jan P. A. M. Jacobs ◽  
Gerard H. Kuper ◽  
Alberto Romero
2017 ◽  
Author(s):  
Tjeerd M. Boonman ◽  
Jan P. A. M. Jacobs ◽  
Gerard H. Kuper ◽  
Alberto Romero

2017 ◽  
Author(s):  
Tjeerd M. Boonman ◽  
Gerard H. Kuper ◽  
Jan P.A.M. Jacobs ◽  
Alberto Romero

2014 ◽  
Vol 599-601 ◽  
pp. 1487-1490 ◽  
Author(s):  
Li Kun Zheng ◽  
Kun Feng ◽  
Xiao Qing Xiao ◽  
Wei Qiao Song

This paper mainly discusses the application of the mass real-time data mining technology in equipment safety state evaluation in the power plant and the realization of the equipment comprehensive quantitative assessment and early warning of potential failure by mining analysis and modeling massive amounts of real-time data the power equipment. In addition to the foundational technology introduced in this paper, the technology is also verified by the application case in the power supply side remote diagnosis center of Guangdong electric institute.


2010 ◽  
Vol 10 (2) ◽  
pp. 181-189 ◽  
Author(s):  
C. Falck ◽  
M. Ramatschi ◽  
C. Subarya ◽  
M. Bartsch ◽  
A. Merx ◽  
...  

Abstract. GPS (Global Positioning System) technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009) are to support the determination of sea levels (measured onshore and offshore) and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min). The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas) are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006). This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement) and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007). This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore) to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication system layout with real-time data streaming, the data processing strategy and the final products of the GPS-based early warning system components.


Author(s):  
Masumi Yamada ◽  
Jim Mori

Summary Detecting P-wave onsets for on-line processing is an important component for real-time seismology. As earthquake early warning systems around the world come into operation, the importance of reliable P-wave detection has increased, since the accuracy of the earthquake information depends primarily on the quality of the detection. In addition to the accuracy of arrival time determination, the robustness in the presence of noise and the speed of detection are important factors in the methods used for the earthquake early warning. In this paper, we tried to improve the P-wave detection method designed for real-time processing of continuous waveforms. We used the new Tpd method, and proposed a refinement algorithm to determine the P-wave arrival time. Applying the refinement process substantially decreases the errors of the P-wave arrival time. Using 606 strong motion records of the 2011 Tohoku earthquake sequence to test the refinement methods, the median of the error was decreased from 0.15 s to 0.04 s. Only three P-wave arrivals were missed by the best threshold. Our results show that the Tpd method provides better accuracy for estimating the P-wave arrival time compared to the STA/LTA method. The Tpd method also shows better performance in detecting the P-wave arrivals of the target earthquakes in the presence of noise and coda of previous earthquakes. The Tpd method can be computed quickly so it would be suitable for the implementation in earthquake early warning systems.


2019 ◽  
Author(s):  
Mirianna Budimir ◽  
Amy Donovan ◽  
Sarah Brown ◽  
Puja Shakya ◽  
Dilip Gautam ◽  
...  

Abstract. Early warning systems have the potential to save lives and improve resilience. Simple early warning systems rely on real-time data and deterministic models to generate evacuation warnings; these simple deterministic models enable life-saving action, but provide limited lead time for resilience-building early action. More complex early warning systems supported by forecasts, including probabilistic forecasts, can provide additional lead time for preparation. However, barriers and challenges remain in disseminating and communicating these more complex warnings to community members and individuals at risk. Research was undertaken to analyse and understand the current early warning system in Nepal, considering available data and forecasts, information flows, early warning dissemination and decision making for early action. The research reviewed the availability and utilisation of complex forecasts in Nepal, their integration into dissemination (Department of Hydrology and Meteorology (DHM) bulletins and SMS warnings), and decision support tools (Common Alerting Protocols and Standard Operating Procedures), considering their impact on improving early action to increase the resilience of vulnerable communities to flooding.


Sign in / Sign up

Export Citation Format

Share Document